
80/310/FDIS
FINAL DRAFT INTERNATIONAL STANDARD

PROJET FINAL DE NORME INTERNATIONALE
Project number

Numéro de projet

IEC 61162-401 Ed.1

IEC/TC or SC CEI/CE ou SC

TC 80
Secretariat / Secrétariat

United Kingdom
Submitted for parallel voting in CENELEC
Soumis au vote parallèle au CENELEC

Distributed on / Diffusé le

2001-08-24
Voting terminates on / Vote clos le

2001-10-26
Also of interest to the following committees
Intéresse également les comités suivants

Supersedes document
Remplace le document
80/261/CDV - 80/295/RVC

Functions concerned
Fonctions concernées

Safety
Sécurité

EMC
CEM

Environment
Environnement

Quality assurance
Assurance de la qualité

INTERNATIONAL ELECTROTECHNICAL COMMISSION COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

Title

Maritime navigation and radiocommunication equipment and system - Digital
interfaces - Part 401: Multiple talkers and multiple listeners - Ship systems
interconnection - Application profile

Titre

THIS DOCUMENT IS A DRAFT DISTRIBUTED FOR APPROVAL. IT MAY NOT BE REFERRED TO AS AN INTERNATIONAL STANDARD UNTIL PUBLISHED AS SUCH.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, FINAL DRAFT
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH
REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

CE DOCUMENT EST UN PROJET DIFFUSÉ POUR APPROBATION. IL NE PEUT ÊTRE CITÉ COMME NORME INTERNATIONALE AVANT SA PUBLICATION EN TANT
QUE TELLE.

OUTRE LE FAIT D'ÊTRE EXAMINÉS POUR ÉTABLIR S'ILS SONT ACCEPTABLES À DES FINS INDUSTRIELLES, TECHNOLOGIQUES ET COMMERCIALES, AINSI
QUE DU POINT DE VUE DES UTILISATEURS, LES PROJETS FINAUX DE NORMES INTERNATIONALES DOIVENT PARFOIS ÊTRE EXAMINÉS EN VUE DE LEUR
POSSIBILITÉ DE DEVENIR DES NORMES POUVANT SERVIR DE RÉFÉRENCE DANS LES RÈGLEMENTATIONS NATIONALES.

© International Electrotechnical Commission

ATTENTION
VOTE PARALLÈLE

CEI – CENELEC
L’attention des Comités nationaux de la CEI,
membres du CENELEC, est attirée sur le fait que ce
projet final de Norme internationale est soumis au
vote parallèle. Un bulletin de vote séparé pour le vote
CENELEC leur sera envoyé par le Secrétariat Central
du CENELEC.

ATTENTION
IEC – CENELEC

PARALLEL VOTING
The attention of IEC National Committees, members
of CENELEC, is drawn to the fact that this final Draft
International Standard (DIS) is submitted for parallel
voting. A separate form for CENELEC voting will be
sent to them by the CENELEC Central Secretariat.

FORM FDIS (IEC)/FORMULAIRE FDIS (CEI)
2001-07-01

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 2 – 61162-401/FDIS IEC(E)

CONTENTS

FOREWORD .. 7
INTRODUCTION .. 9

1 Scope .. 9
1.1 General .. 9
1.2 Application profile ... 9

2 Normative references... 9
3 Definitions ..10

3.1 Terms ..10
3.2 Abbreviations...13
3.3 Conventions ..13
3.4 Protocol data types ..15
3.5 Non-protocol types ..17
3.6 Literals ..18

4 Dependence on T-profile...18
4.1 General ...18
4.2 LNA-LNA or MAU-LNA communication...18
4.3 Services required...18
4.4 Services required, but not used by the A-profile...19
4.5 Variable quality of service attributes ..19

4.5.1 Reliability and safety..19
4.5.2 Real time response ..19
4.5.3 Support for stream data ...20
4.5.4 Maximum and minimum message lengths ..20

4.6 Congestion and flow control...20
5 Functional requirements for MAU..20

5.1 General overview...20
5.2 MAU configuration management ..21

5.2.1 Define MAU parameters (MauInitialize) ...22
5.2.2 Connection open request (MauOpen) ...23
5.2.3 Connection close (MauClose) ...23
5.2.4 MAU state change call-back (MauState) ...24

5.3 Session management, authentication and congestion control25
5.3.1 Session control and authentication...25
5.3.2 Congestion control (MauSession) ...26
5.3.3 Request and connection limiting ..26

5.4 Interface and connection point overview ..26
5.4.1 Special considerations for anonymous broadcast (ABC)27
5.4.2 MCP membership in interfaces ..27
5.4.3 MCP attributes ...27
5.4.4 Modify MCP attributes (McpGet, McpSet)..28
5.4.5 Interface attributes ...29
5.4.6 Modify interface attributes (IfGet, IfSet)..29

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 3 –

5.5 Interface management ...30
5.5.1 Define interface (IfTable)...31
5.5.2 Remove interface (IfRemove) ...31
5.5.3 Establish interface connection (IfOpen) ..32
5.5.4 Close interface (IfClose) ...32
5.5.5 Interface state change call-back (InterfaceState)33

5.6 MCP transactions. ...34
5.6.1 Function type transactions ...35
5.6.2 Non-acknowledged write transactions ..36
5.6.3 Subscribe type transactions ...36
5.6.4 Individual subscribe transactions ...37
5.6.5 Client side initiation (TransActivate) ...38
5.6.6 Transaction cancellation (TransCancel). ...38
5.6.7 Client side transaction state change (TransClientState)39
5.6.8 Server side transaction state change (TransServerState)39

5.7 Bulk data transfer ..40
6 Functional requirements for LNAs ...40

6.1 Context diagram and functional overview...40
6.2 MAU name management (MauAck, MauRequest, SessionClose)41

6.2.1 Duplicate MAU names..43
6.2.2 Local MAU names..43
6.2.3 Remote MAU names ..43

6.3 LNA-LNA session management ...45
6.3.1 Heard about LNA ...45
6.3.2 Known LNA..45
6.3.3 Dead LNA ..46
6.3.4 The LNA watchdog function ...46

6.4 Local MAU connection management ..47
6.4.1 MAU identification..47
6.4.2 Local MAU states...47
6.4.3 Starting MAU management ..48
6.4.4 Ending MAU management..48

6.5 MAU control MCP ..49
6.5.1 General overview ...49
6.5.2 Functionality ..49
6.5.3 Watchdog service ..49

6.6 Session management ..50
6.6.1 General principles..50
6.6.2 MAU session information ...50
6.6.3 Session codes used for authentication ...50

6.7 Accept type interface management ..51
6.7.1 General overview ...51
6.7.2 Possible errors in interface definitions or connection requests51
6.7.3 Special handling of anonymous broadcast interfaces52
6.7.4 Definition and removal of accept interface..53
6.7.5 Establishing and closing connections to accept interfaces53

6.8 Connect type interface management ..55

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 4 – 61162-401/FDIS IEC(E)

6.9 General transaction management ..57
6.9.1 MCP identity and transaction address ..57
6.9.2 Transaction identity..57
6.9.3 Session identity ...57
6.9.4 Transaction types ..57
6.9.5 Exception handling ..58

6.10 Accept side transaction management...59
6.10.1 Read, write and function transaction handling ..61
6.10.2 Non-acknowledged write request ...61
6.10.3 Initial subscribe..61
6.10.4 Initial individual subscribe ..62
6.10.5 Server initiated subscribe acknowledgement ..62
6.10.6 Server initiated individual subscribe acknowledgement62
6.10.7 Anonymous broadcast subscribe..62
6.10.8 Cancellation of a transaction..62

6.11 Connect side transaction management ..63
6.12 LNA-MAU ..64
6.13 Use of priority levels in LNA...64
6.14 Congestion control...65

6.14.1 Congestion cases ..65
6.14.2 LNA requirements ..65
6.14.3 MAU requirements ...66

7 Protocol defined as sequence diagrams..66
7.1 General conventions ..66

7.1.1 Broken connections ...66
7.1.2 Exception handling ..66

7.2 LNA management ..67
7.2.1 Opening LNA-LNA connection..67
7.2.2 LNA watchdog functionality ..67
7.2.3 Congestion control ...67

7.3 Opening and closing MAU sessions ...68
7.3.1 MAU to MAU communication via same LNA ...68
7.3.2 Opening a MAU session...68
7.3.3 Closing a MAU session ..69
7.3.4 Finding a remote MAU in LNA..70
7.3.5 Server MAU or LNA dies ..71

7.4 Opening and closing interfaces ..71
7.4.1 Opening accept interface ...71
7.4.2 Closing accept IF ...72
7.4.3 Opening connect IF..72
7.4.4 Closing connect interface...73

7.5 Data transfer messages ...73
7.5.1 Data transfer of read, write or function type ...74
7.5.2 Subscribe data transfers ..75
7.5.3 Data transfer cancel and transfer timeout...76

8 Message definitions ..78
8.1 Introduction ...78

8.1.1 Common message format ..78

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 5 –

8.2 MAU-LNA messages..79
8.2.1 Message format ...79
8.2.2 MAU session control ..80
8.2.3 Interface definition messages ..82
8.2.4 Data transfer messages ...86

8.3 LNA-LNA message formats for reliable link ..89
8.3.1 General message format ..89
8.3.2 Connection management ...89
8.3.3 MAU management ...90
8.3.4 Interface connection management ...92
8.3.5 Data transfer management...94

8.4 LNA-LNA message formats for multicast link ...95
8.4.1 General message format ..95
8.4.2 Different multi-cast ports ..95
8.4.3 Name look-up and watchdog messages ...96
8.4.4 Data transfer messages ...98
8.4.5 Anonymous broadcast message details ...99

9 General identity codes ..100
9.1 Protocol and software version codes..100
9.2 Network address, node number and LNA id (address_m, word32_m)100
9.3 MAU identity (mauname_m, mauid_m)...100
9.4 Data object and MCP identity (mcid_m) ...101
9.5 Interface code (mcid_m) ..102
9.6 Data object name (mcname_m, mciname_m). ...102
9.7 Interface name (ifname_m)...102
9.8 Session identity (word16_m)..102
9.9 Transaction identity (word32_m) ...102
9.10 Format string ...102

9.10.1 Data record format encoding..102
9.10.2 Transaction type coding ...104
9.10.3 Complete format string...104

9.11 Password (password_m)...104
10 Data marshalling...104

10.1 Introduction ...104
10.2 Network octet order ...105

10.2.1 General ...105
10.2.2 Basic types ..105
10.2.3 Composite types ..106
10.2.4 Messages ..106

10.3 Pack and unpack routines..106
10.3.1 Introduction..106
10.3.2 Pack routine...106
10.3.3 Unpack routine...107

11 Communication link between MAU and LNA..107
11.1 Introduction ...107

11.1.1 General service specification ...107
11.1.2 Point to point ...108
11.1.3 Connection oriented...108

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 6 – 61162-401/FDIS IEC(E)

11.1.4 Symmetrical and full duplex ...108
11.1.5 Message based..108
11.1.6 Priority ...108
11.1.7 Buffering and flow control ..108
11.1.8 Reliable transfer ..108
11.1.9 Error reporting ...108

12 General principles for module functionality..109
12.1 Flexibility in receiving, conservatism in sending ...109
12.2 Garbled messages...109
12.3 Closed communication links...109

Annex A (normative) Message codes ...110
Annex B (normative) Error codes and message field values ...112
Annex C (normative) Symbolic constants ...113
Annex D (informative) Compatibility between MiTS and the IEC 61162-400 series115

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 7 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MARITIME NAVIGATION AND RADIOCOMMUNICATION
EQUIPMENT AND SYSTEMS –

DIGITAL INTERFACES –

Part 401: Multiple talkers and multiple listeners –
Ship systems interconnection – Application profile

FOREWORD
1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To this
end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to
technical committees; any IEC National Committee interested in the subject dealt with may participate in this
preparatory work. International, governmental and non-governmental organizations liaising with the IEC also
participate in this preparation. The IEC collaborates closely with the International Organization for Standardization
(ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has representation from
all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form
of standards, technical specifications, technical reports or guides and they are accepted by the National
Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International
Standards transparently to the maximum extent possible in their national and regional standards. Any divergence
between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the
latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject
of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61162-401 has been prepared by IEC technical committee 80:
Maritime navigation and radiocommunication equipment and systems.

The text of this standard is based on the following documents:

FDIS Report on voting

80/XX/FDIS 80/XX/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 3.

The special typographical conventions and nomenclature used in this standard are defined in
IEC 61162-400, annex A.

Annexes A, B and C form an integral part of this standard. Annex D is for information only.

The committee has decided that the contents of this publication will remain unchanged until
June 2005. At this date, the publication will be

• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 8 – 61162-401/FDIS IEC(E)

INTRODUCTION

International Standard IEC 61162 is a four-part standard which specifies four digital interfaces
for applications in marine navigation, radiocommunication and system integration.

The four parts are:

IEC 61162-1 Single talker and multiple listeners

IEC 61162-2 Single talker and multiple listeners, high speed transmission

IEC 61162-3 Multiple talkers and multiple listeners – Serial data instrument network

IEC 61162-4 Multiple talkers and multiple listeners – Ship systems interconnection.

Part 4 of the standard is sub-divided into a number of individual standards with part numbers
in the IEC 61162-400 series. A full reference to part 4 can be found in IEC 61162-400,
clause 4.

This part of the standard, IEC 61162-401: A-profile specification, defines the application
functionality and its implementation in an application layer protocol.

Relationship with the other parts of the IEC 61162 series of standards is defined in annex B to
IEC 61162-400.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 9 –

MARITIME NAVIGATION AND RADIOCOMMUNICATION
EQUIPMENT AND SYSTEMS –

DIGITAL INTERFACES –

Part 401: Multiple talkers and multiple listeners –
Ship systems interconnection – Application profile

1 Scope

1.1 General

IEC 61162-4 series specifies a communication system for use in integrated ship control
systems.

IEC 61162-400 defines the overall functional scope for the communication system.

1.2 Application profile

This part of IEC 61162 describes the application profile (A-profile – corresponding to ISO-OSI
layers 5 to 7 [ISO 7498]) of the communication protocol which is the basis for the
communication system. It relies on the realization of layers 1 to 4 (the T-profile) as described
in part 410.

The description of the A-profile is in terms of services offered to the application using the
protocol and of message contents and sequences used to realize these services.

2 Normative references

The following normative documents contain provisions which, through reference in this text,
constitute provisions of this part of IEC 61162. For dated references, subsequent amend-
ments to, or revisions of, any of these publications do not apply. However, parties to
agreements based on this part of IEC 61162 are encouraged to investigate the possibility of
applying the most recent editions of the normative documents indicated below. For undated
references, the latest edition of the normative document referred to applies. Members of IEC
and ISO maintain registers of currently valid International Standards.

IEC 61162-400, Maritime navigation and radiocommunication equipment and systems –
Digital interfaces – Part 400: Multiple talkers and multiple listeners – Ship systems
interconnection – Introduction and general principles

IEC 61162-410, Maritime navigation and radiocommunication equipment and systems –
Digital interfaces – Part 410: Multiple talkers and multiple listeners – Ship systems
interconnection – Transport profile requirements and basic transport profile

IEC 61162-420, Maritime navigation and radiocommunication equipment and systems –
Digital interfaces – Part 420: Multiple talkers and multiple listeners – Ship systems
interconnection – Companion standard requirements and basic companion standards

IEEE 754: IEEE Standard for Binary Floating-Point Arithmetic

ISO/IEC 8859-1, Information technology – 8-bit single-byte coded graphic character sets –
Part 1: Latin alphabet No. 1

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 10 – 61162-401/FDIS IEC(E)

ISO/IEC 10646-1, Information Technology – Universal Multiple-Octet Coded Character Set
(UCS) – Part 1: Architecture and Basic Multilingual Plane

RFC 2500:1999, Internet Official Protocol Standards – Internet Activities Board standard

NOTE RFC (request for comments) is a document issued by the Internet engineering task force (IETF), the
International standardization body for the Internet, that describes a part of the Internet protocol. Some RFCs are
accepted as official Internet standards and listed in the “Internet Official Protocol Standards” itself an RFC.

3 Definitions

This clause is divided into definition of terms (terms), definition of abbreviations
(abbreviations), definitions of nomenclature (conventions), definition of data types (data
types) and definition of literal formats. Other definitions valid for this part of IEC 61162 are
contained in part 400 of this standard.

3.1 Terms

For the purpose of this part of IEC 61162, the following terms apply:

3.1.1
anonymous broadcast (ABC)
a broadcast service where the sender does not know to which MAU it is sending data.
Similarly the listener may not know which sender it should listen for

3.1.2
array
a linear indexed sequence of identical data types. The index runs from zero and upwards.
Arrays can have variable lengths (with a fixed upper limit) or fixed lengths. The difference
between these two types is normally only visible during transmission between modules where
the real length of a variable length array is transmitted as an attribute

3.1.3
bit order
this standard numbers bits in an octet from zero to seven. Bit seven is the most significant bit;
bit zero the least significant

3.1.4
character
this standard provides two mechanisms for the transmission of characters:
a) an 8-bit character based on ISO/IEC 8859-1 (also called ISO Latin-1). This set covers

most national alphabets based on the Latin letters;
b) a 16-bit character based on ISO/IEC 10646-1. This standard specifies the use of the 16-

bit form Universal Character Set 2 (UCS-2) which covers most of the commonly used
character sets in the world

NOTE 1 Later revisions of the standard may also support 32-bit characters.

NOTE 2 Any reference to character in this standard implies the 8-bit character if not otherwise stated.

3.1.5
companion standard
these are the mechanisms to define and describe how the A-profile services are used to
implement some application functions and interfaces (see IEC 61162-420)

3.1.6
connection
an association between two interfaces or two MCPs, one each on a server and a client MAU.
A connection must be established before transactions can be activated

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 11 –

There is also a connection between each pair of LNAs and between each MAU and its LNA.
Although similar in concept, they are not directly associated with the activation of
transactions.

3.1.7
data type
this standard defines a set of data types that have a machine and T-profile independent
interpretation. The types cover, for example characters, signed and unsigned integers and
floating point containers as well as some other derived types. The data types are defined
in 3.4

3.1.8
format string
a text string that defines the structure of certain data records that are transmitted via the
T-profile. It also contains information about the function supported by data objects. See
clause 8.4.3.5 for more information

3.1.9
interface
a collection of MCPs (references to data objects) implemented on a server or client MAU
which behaves similarly to MCPs in that operations on interfaces effect all MCPs in the
interface

3.1.10
IP – internet protocol
references in this standard refer to the protocol defined in RFC 2500. Part 410 of IEC 61162
specifies a T-profile using version 4 of the internet protocol (IPV4), but additional parts may in
the future define T-profiles using newer versions of the protocol

3.1.11
IPV4 – internet protocol version 4
is currently the most used version of the internet protocol (IP). See IEC 61162-410 for more
details

3.1.12
magic number
The first field of all messages which will be common to a group of messages. It can be used
by the protocol software to identify and verify messages and message boundaries. See
annex A

3.1.13
maximum message size
this protocol is based on the exchange of messages between various modules. The T-profile
may impose limits on the maximum size of these messages. See clause 4 for more information

3.1.14
message
one of the basic components of this standard. They are collections of information items with a
defined format that are exchanged between various modules to achieve some service or part
service. The message formats are defined in clause 8. The exchange patterns are defined as
sequence diagrams in clause 7

3.1.15
module
entities (programs or host computers) between messages that are sent which are either an
LNA (application independent network communication manager) or a MAU (the application
program module)

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 12 – 61162-401/FDIS IEC(E)

3.1.16
network bit order
the A-profile definition is resolved to the octet level. The ordering of bits within each octet is
defined by the T-profile in use. See clause 4 for more information

3.1.17
network octet order
all multi-octet entities (messages or fragments of messages) are defined to be transferred in a
T-profile and host computer independent format. This format is defined in 8.4.3.5

3.1.18
null MCP
an MCP associated with the MAU itself. It will have a reference code of zero. It can be
manipulated similarly to a normal MCP through the MAU control data object (see 6.5) and it
can also be used to transfer information to MAU call back routines (see 5.2.4). The null MCP
cannot be connected to from remote MAUs and it is not associated with any interface

3.1.19
octet
the smallest information entity that the A-profile protocol considers which consists of 8 bits
transmitted by the T-profile in some specific sequence. This standard requires that a group of
octets can be transmitted as a message and that the received message has the same
sequence of octets as the sent message and that each received octet has the same bit
pattern as the sent octet. The protocol does not specify any particular ordering of bits within
octets as long as it is consistent over the network
NOTE One entity of the Boolean type can be represented as a bit within an octet, but any number of Boolean
entities will be transmitted as an integral number of octets.

3.1.20
record
a sequence of different or identical data types given a fixed definition and an associated type
name

3.1.21
sequence diagram
a representation of how messages are transferred between the modules of the protocol
system. The format is defined in 3.3.3

3.1.22
session
the term is used to identify a connection from a client MAU to a server MAU. It represents one
unbroken connection where the LNAs guarantee that no other client MAU has replaced the
originally connecting MAU. The death of a client MAU will be reported to the server MAU as a
closed session

3.1.23
T-profile network
a collection of network nodes (host computers) that can communicate with each other
following this standard. The concept is defined in IEC 61162-410.
This standard does not specify how nodes on two different T-profile networks shall communicate
NOTE The standard does, however, specify that one node shall be able to be connected to more than one
T-profile network at one time and this can be used to develop gateway nodes.

3.1.24
TCP/IP – transmission control protocol / internet protocol
for version 4 of the internet protocol (IPV4) is defined in RFC793. See IEC 61162-410 for
more details

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 13 –

3.1.25
transaction
the term is used to identify an exchange of data between two MAUs that is related to one
initial request from the client. It can consist of from zero (non-acknowledged write) to an
unlimited number (subscriptions) of messages from the server

3.1.26
version number
in this standard, it is 4.0 (major number is 4, minor is 0). Earlier version codes have been
used by MiTS (see IEC 61162 and IEC 61162-400)

3.2 Abbreviations

Table 1 lists important abbreviations used in this standard. The third column gives a reference
to the clause where a definition of the term can be found.

Table 1 – Abbreviations

Term Description Reference

ABC Anonymous broadcast 3.1.1

Ack Acknowledge Figures & text

IPC Inter-process communication 11.1

IP Internet protocol 3.1.10

IPV4 Internet protocol version 4 3.1.11

LNA Local network administrator Part 400

MAU MiTS application unit (application program module) Part 400

MCP MAU connection point 5.3

MTU Maximum transmission unit 4.1

Obj Object Figures & text

Req Request Figures & text

RLNA Remote LNA (in sequence diagram) 3.3.3

RMAU Remote MAU (in sequence diagram) 3.3.3

TCP/IP Transmission control protocol/internet protocol 3.1.24

UCS Universal character set 3.1.4

3.3 Conventions

3.3.1
use of type face
each description element has its own conventions for use of type face. In this standard, the
following conventions apply:
a) use of courier type face indicates either some defined protocol data type (see next item)

or another protocol identifier (e.g. a message code, see 3.3.2);
b) use of the extension _m in a word type set in courier means that it references one of the

defined protocol data types. The types are defined in 3.4;
c) italics are normally used when a word or term references a label or identifier in an

associated table or figure.

3.3.2
message definition template
this standard describes a message based protocol. Each message will be described as an
ordered list of fields. An example is shown in table 2.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 14 – 61162-401/FDIS IEC(E)

Table 2 – Example of message definition

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m type, message type

4 – 5 word16_m Priority

6 – 7 word16_m length, message length (= x+1 or y+1)

8 – x message body necessary

 – y message body sometimes required

The message definition has three columns.

a) The first column gives the octet numbers used by a field, numbered from the first to the
last octet inclusive of the field. The numbering starts with 0 at the first octet of the
message. The letters x, y, etc. are used to indicate the last byte number in a variable
length field. Arithmetic expressions may also be indicated in this column. Arithmetic
expressions are enclosed in parenthesis.

b) The second column gives the data type of the field (see 3.1.7 and 3.4.2).
c) The third column describes the contents of the field. Identifiers in courier show constant

values. The value of these can be found in the annexes. Expressions typeset in italics are
described in the text following the message definition.

The physical message consists of the entities defined in the table transmitted as a sequence
of (multi-octet) quantities. A message may consist of one part that is always transmitted and
one part that is sometimes transmitted. The limit between these two parts is shown by a thick
row divider line in the table

3.3.3
sequence diagrams
message sequences are described in diagrams. An example is shown in figure 1

EXAMPLEEXAMPLE

MAU
MAPI_AREQ

CC_REQMAU

RMAURLNALNA

CC_REQMAU

LL_MAUREQ(N)

LL_MAUACK

1

2

CC_DEFMAU

Repeat until answered, RETRY_INTERVAL
2 Avoided if already in LNAs database

3

3 Triggered by connection of MAU

1

Figure 1 – Sequence diagram example

The following graphical elements are used:

– each communicating module is represented by a vertical dashed line. The upper list of
names identify the modules. The same module list will be used in all diagrams (the
modularization is defined in IEC 61162-400):
1) MAU is the local application unit communicating with its LNA;
2) LNA is the local communication manager communicating with MAU and RLNA;

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 15 –

3) RLNA is the remote communication manager communicating with LNA and RMAU;
4) RMAU is the remote application unit communicating with its RLNA;

NOTE When two MAUs which are connected to the same LNA are communicating, the LNA – RLNA
communication sequence may depend on the implementation. However, it is recommended that the implementation
uses the standard message sequence and defines some kind of LNA internal loop-back interface for internal
messages.

– time runs from top to bottom. If needed, timing information may be shown explicitly on the
right side as comments, otherwise no time scale is given;

– messages are shown as arrows between the vertical lines. The arrows are pointing from
the sender to the receiver, and downwards. Dashed arrows (as in comment (2)) indicates
messages that are sent only under certain conditions;

– message code is shown on the far left side, aligned with the arrow start point. The code is
associated with a message structure that is defined in clause 8. Two special short-hand
notations are used:
1) a trailing (N) in parenthesis defines a message with a negative acknowledgement,
2) a trailing (C) in parenthesis specifies two alternate messages. Explanation is given in

the text;
– a thick solid vertical line along the module line is used if the reception of a message

causes an “immediate” sending of one or more new messages. This thick line should be
interpreted as showing that the connected operations are executed in the same control
thread and within a relative short time frame;

– a thick dashed vertical line is used if the new message is sent after a (possibly)
significant time, for example after a timer expires (as in comment (1)) or as a result of
another internal event (as in comment (3)),

– sequence indicators to group one or more messages or other graphical elements
(usually as a line on the right hand side) associated with a comment reference. This
means that the comment applies to the group of graphical elements (as example for
comment (1) and (2));

– comment references as numbers enclosed in circles. The number will refer to a comment
either in the drawing itself or in the following text, with the number in parenthesis.

The graphical elements are supplemented by other textual explanation where necessary.

3.4 Protocol data types

3.4.1
general
this clause defines the data types used by this standard. Data type is defined as a data
container which is capable of containing information with a certain precision. Any
implementation of this protocol shall make sure that the host computer’s or the T-profile’s
representation of these data types have at least the precision defined in the following clauses

3.4.2
basic type
for numerical and textual values, the standard makes references to the set of basic types
described in Table 3. The standard will use the names listed under the type column to identify
any of the basic types. The format column specifies the format string encoding for the relevant
type and the short format column lists the one-character code that can be used to identify the
type, for example in software libraries (see 8.4.3.5).

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 16 – 61162-401/FDIS IEC(E)

Table 3 – Basic entities

Type Format Short format Description

bool_m b l 1 bit Boolean (0 = FALSE, 1 = TRUE)

char8_m c8 c 8 bit character [ISO/IEC 8859-1]

char16_m c16 C 16 bit character [ISO/IEC 10646-1], UCS-2

word8_m w8 b 8 bit unsigned integer

word16_m w16 w 16 bit unsigned integer

word32_m w32 W 32 bit unsigned integer

word64_m w64 U 64 bit unsigned integer

int8_m i8 t 8 bit 2’s complement integer

int16_m i16 I 16 bit 2’s complement integer

int32_m i32 I 32 bit 2’s complement integer

int64_m i64 H 64 bit 2’s complement integer

float32_m f32 f 32 bit floating point [IEEE 754]

float64_m f64 F 64 bit floating point [IEEE 754]

NOTE 1 The char8_m data-type can be both signed and unsigned. This is dependent on the implementation. It
shall, however, be guaranteed true to a relevant machine’s representation of an 8-bit ISO/IEC 8859-1 character.

NOTE 2 Expect an extension of this list to include higher precision entities, for example 32-bit characters, 128-bit
integers and 128-bit floating point. It is recommended that coding practices take this into consideration.

3.4.3
array
arrays are sequences of basic types, unions or records (not arrays). Arrays are variable
length or fixed length, with a special type of variable length array called an opaque block:
a) arrays: this is an indexed list of element types. It is defined by element type and array

length. Elements are numbered from zero and up. The length is constant and all elements
are transmitted on the network;

b) variable length arrays (var-array): this is an array with a variable length. It is defined by
element type, maximum length and the type of an unsigned integer used to contain the
length of the transmitted array. Only the length field itself and the number of elements
specified in the length field are transmitted on the network.

c) opaque block: this is a special case of the variable length array that is used to support
more complex formats that cannot be represented in the current formatting strategy. An
opaque block is a variable length array of unsigned octets (word8_m) that must be further
interpreted by a specified information definition.

In this part of IEC 61162, only fixed length arrays are used. They are indicated by putting the
array length in square brackets after the array type name, for example word16_m[32].

A special case of the array is the null terminated string. This is a sequence of characters
terminated by the null character. The maximum length of the string is always defined. This
type is only used in the A-profile definition and is not accessible to the application
programmer

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 17 –

3.4.4
record
is an ordered list of basic types, other records or arrays. All elements or arrays are
transmitted. It is defined as an ordered list of elements and/or arrays
Records are not used in this part. They are only used by application programmers. Messages
can be regarded as a special case of records. Messages are defined in clause 8.

3.4.5
union
is similar to a record, but with the definition of an additional unsigned integer used to index
the element or array that is actually transmitted in one given transfer. Only one element or
array in the basic record can be transmitted. The union is defined as a record, but with the
additional index type
Unions are not used in the A-profile definition. They are available for application programmers

3.4.6
derived types
this part of the standard also specifies a set of derived types that are used to contain certain
special protocol codes. These are described in Table 4. The format column specifies the
format string encoding for the relevant type (see 8.4.3.5). Note that the Ns format represents
the special array type called “null terminated string” (in this text references to as string_m)

Table 4 – Derived number formats

Type Format Description Reference
address_m (w16[w8:48]w8) Network address for a T-profile network 9.2
nodenumber_m w32 Network node number in a T-profile network 9.2
mauid_m w16 LNA specific identifier for a local MAU 9.3
mauname_m 32s MAU name 9.3
mcid_m w16 Data object identifier code 9.4
mciname_m 32s Data object name for interface MCP 9.6
ifname_m 32s Interface name 9.7
password_m 8s Password, fixed length array of 8 char8_m 9.11
word16_m w16 Identifier for remote MAU-LNA session 9.8
string_m Ns Null terminated string of maximum length N (inc. null) 0
word32_m w32 Identifier for a transaction 9.9

3.5 Non-protocol types

Some data types are used in this standard to refer to various data entities that need to be
implemented in the API or in the LNA, but which do not occur in protocol messages. The table
below gives an overview of these.

Table 5 – Non-protocol data types

Type Description Reference

val_m A general integral value, either integer or reference to structure 5.4.3

eventh_m A reference or reference to a call-back function 5.4.3

pack_m A reference to a data marshalling function 5.4.3

priority_m Priority (PT_LOW, PT_NORMAL, PT_URGENT) 5.4.3

The data types are defined based on semantics of the C language and may be more or less
difficult to map to other languages

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 18 – 61162-401/FDIS IEC(E)

3.6 Literals

This standard uses literals as defined in annex A of IEC 61162-400. The principles are
summarized below.

3.6.1
numbers
decimal and hexadecimal (prefixed with 0x) numbers are used. Decimal numbers can be
signed and/or floating point

3.6.2
characters and strings
single characters are enclosed in single quotes, strings in double

3.6.3
Boolean
the Boolean values TRUE (numeric value 1) and FALSE (numeric value 0) are used

3.6.4
symbolic constants
annexes A to C define symbolic constants used in this standard. All references to these
constants in this standard are by the constant’s symbolic name in courier typeface

4 Dependence on T-profile

4.1 General

This part of the standard is written in a form that makes it independent of the T-profile. The
principle is that different T-profiles can be used, dependent on the application area and
corresponding requirements. The standard principles for the definition and construction of a
T-profile are contained in IEC 61162-410.

This clause gives an overview of the assumptions that this part has been based upon and
some of the deviations that can be allowed.

4.2 LNA-LNA or MAU-LNA communication

The LNA is only required to use the T-profile for LNA-LNA communication. However, it is
suggested that the LNA also uses the same logical structure (TP-network, network node
number) for MAU-LNA communication (see 6.4.1.2).

4.3 Services required

The T-profile is assumed to provide node connection and data transport services as described
in IEC 61162-410 of this standard. Briefly summarized, these services are:

a) define and establish one or more T-profile networks where nodes are individually
identifiable by network node number;

b) establish reliable (and possibly redundant) communication links for messages between
any two nodes on the network;

c) establish listening and transmitting multi-cast ports that can send or receive messages
between and to all nodes on a T-profile network;

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 19 –

d) detect and report errors on a connection, including loss of redundancy;
e) send and receive reliable messages on two priority levels (PT_URGENT and PT_NORMAL);

f) send and receive unreliable broadcast (or multicast) messages on the PT_URGENT and
PT_NORMAL priority level.

This standard enables communication between nodes on one T-profile network.

4.4 Services required, but not used by the A-profile

The T-profile shall in addition to the services listed in the previous subclause provide two
further management-oriented services:

a) physical network management;
b) time distribution.

These services are required for the integrated control system, but will not be used to
implement A-profile services as described in this part of the standard. These services are
assumed to be handled independently of the implementation of the A-profile in the host
computer.

4.5 Variable quality of service attributes

The A-profile does not necessarily need all services described above, nor does it need to
have the same quality of service for all variants of T-profiles. This subclause describes
allowable deviations from the assumed quality of service and the consequences for A-profile
functionality.

4.5.1 Reliability and safety

The T-profile is in principle assumed to give reliable delivery of certain types of data, also in
face of partial loss of communication capability. Furthermore, it is assumed that no single
error in the lower level transport functionality shall disrupt the delivery of data. This normally
requires some form of redundancy, retransmission capabilities and sufficient self-checking of
T-profile transmission mechanisms.

The A-profile will function without this level of reliability. However, the basic safety related
properties of the communication system will be severely affected by lower service quality in
these areas. For non-safety-related integration tests or non-critical data acquisition systems,
it will normally be sufficient to have a lower integrity T-profile service, for example by using
the worldwide Internet. For safety related systems, this will not be sufficient.

It is necessary to consider the application area for the system before a decision is made to
allow a lower quality T-profile to be used. This must also be clearly documented.

For broadcast messages, the A-profile and the applications are required to assume that
messages can be lost or duplicated. Both losses and duplication may impact on the
performance of the system. The T-profile should reduce the possibilities for any of this to
happen.

4.5.2 Real time response

The T-profile is required to provide three priority levels: PT_URGENT, PT_NORMAL and
PT_LOW. Higher priority traffic shall have precedence over lower priority traffic. In addition, it
is assumed that the T-profile can supply some kind of response guarantees for each of the
priority levels.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 20 – 61162-401/FDIS IEC(E)

The three priority levels are sufficient to give some level of priority support even on simple
T-profiles without quality of service support on the transport level, for example as for Internet
version 4 over Ethernet. The use of individual buffers on the data link level and prioritized
scheduling of messages from the buffers should give sufficient priority control for most
purposes. However, actual parameters must be determined based on implementation
characteristics and load figures.

4.5.3 Support for stream data

Stream data interfaces are not required by the A-profile specification. To use stream data
interfaces, the MAUs have to establish a direct stream between them. The establishment of
such streams is defined in the companion standards. The implementation of the stream is
defined by the T-profile.

4.5.4 Maximum and minimum message lengths

This standard does not enforce any upper limit on message sizes. However, the underlying
T-profile may define some limits that will be propagated to the A-profile, for example:

a) for urgent messages, the message length will normally be limited to the maximum
transmission unit (MTU) of the transport protocol in use;

b) for some transport protocols there may be general message length restrictions due to
protocol particulars, for example for message-oriented transfers;

c) some implementations may limit the message length to increase efficiency.

The maximum message length, if enforced by the implementation, shall be readable by the
application through specified API calls (see service definitions in IEC 61162-410).

The A-profile will be designed to accommodate message sizes as low as 512 bytes of payload
data. This constant is defined as MV4_MES_MIN in annex C. Note that this will reduce the
available payload also for application programs.

4.6 Congestion and flow control

The A-profile will use flow control mechanisms in the T-profile to inhibit further transmissions
on a communication link if it is congested. The flow control shall only be used on low and
normal priority links. The flow control will be applied on the session level (see 5.2.4). A
session can be looked at as an association between two MAUs.

In case of congestion, the A-profile shall queue non-transmitted messages until the T-profile
is able to receive new outgoing messages. The implementation shall as far as possible avoid
that messages are cancelled due to congestion. However, an application error that makes the
MAU continue to send messages on a congested link may be handled by closing the session
completely.

5 Functional requirements for MAU

5.1 General overview

The context diagram for the MAU is shown in Figure 2 The MAU uses its local LNA for all
communication with the network. It may be equipped with a diagnostics console, but the
functionality of this is not defined in this standard.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 21 –

MAULocal LNA Diagnostics
req/ack/data

ack/req

data/(ack)

(req)

Figure 2 – MAU context diagram

The MAU is divided into the application specific part and the application programmer’s
interface (API). The latter part implements the application independent part of the MAU and
takes care of mapping the application services to and from the relevant LNA-MAU messages.
The implementation of the application services in the LNA are discussed in clause 6.

This clause defines the services that this protocol makes available to the application
programs (MAU). Most of these services are implemented as a message to the LNA, possibly
with some form of acknowledgement being expected later. In this case, the message name is
included in the service definition. The protocol can then be determined by looking up the
corresponding sequence diagram.

Other services require the use of an application program interface (API) with more
functionality than simply a translation from subroutine call to protocol message. These
services are not referenced to a particular message.

All services are required and must be implemented by all open APIs supporting this protocol.
Clause A.7 of IEC 61162-400 gives an overview of the service definition format and how to
convert it into an API.

5.2 MAU configuration management

The services defined in this subclause are used to manipulate MAU state, from connection to
LNA to removal. The services are based on the state transition diagram shown in Figure 3.

The states are:

• MAU_DEFINED: a call to the service MauInitialize defines the MAU’s context and
defines it as a local non-connected application unit. This state can be used to manipulate
attributes of connection points or define connection points, but no connections can be
established;

• MAU_OPENING: a connection attempt to the LNA is initiated by a call to MauOpen. The
MAU will stay in this state until the connection is established, it times out or an
unrecoverable network error occurs. The application program must wait for one of these
events or explicitly request a close (MauClose),

• MAU_OPEN: when the connection to the LNA is established, the MAU enters the open
state. At this stage, the MAU is defined in the network and has been assigned a set of
standard services accessible by the LNA and other MAUs in the system. Connection
points can now be established, and when successfully opened, used for transactions,

• MAU_CLOSED: the connection to the LNA has been requested to close by an external unit
(LNA or another MAU) or by the application itself calling MauClose. The application
program waits for the EV_LNA_RESTART signal before it reopens the MAU-LNA
connection;

NOTE The external request can usually be denied by the MAU, in which case the MAU stays in the open state.
The kill signal cannot be denied.

• MAU_ERROR: a non-recoverable communication error occurred. New communication
parameters must be established before a new attempt can be made.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 22 – 61162-401/FDIS IEC(E)

•

MAU_DEFINED

MAU_OPENING

MAU_OPEN

MAU_ERROR

MAU_CLOSED

MauInitialize

Create MAU

MauOpen

Wait for LNA

EV_LNA_CONNECT

Register MCP

EV_LNA_CONNECTION_DOWN

Re-open LNA

MauOpen fail
Re-initialize

EV_LNA_NO_CONNECT

Re-open LNA

EV_LNA_RESTART

Re-open LNA
MauClose

Close and restart

MauClose, EV_LNA_CLOSE,
EV_LNA_RESET, EV_LNA_KILL

Accept close and restart

Terminate

EV_LNA_OPEN_ERROR

Re-initialize

EV_LNA_STATUS

Watchdog

EV_LNA_SESSION

Remote client change

Figure 3 – MAU state diagram

Note that the MAU has an associated MCP (the null MCP, see 6.5) that can be used to control
and monitor some of the connection related attributes of the MAU. The last error attribute for
the null MCP will return any error details associated with a MAU level message exchange.

5.2.1 Define MAU parameters (MauInitialize)
NOTE This call is used to define certain parameters that are used when the MAU is later instantiated.

Pre-condition: OS and communication sub-system initialized. A communication descriptor for
MAU-LNA communication has been created.

Post-condition: system ready to open a communication channel to the LNA or an
unrecoverable error occurred.

Input parameters:

a) communication descriptor: a reference to the communication channel used between MAU
and its LNA, usually provided through a T-profile API (TLI);

b) maximum number of data objects: this is used to allocate memory for descriptor tables.
May be unnecessary in some implementations;

c) MAU name: logical name of application module. It is possibly to let the LNA define a
unique name by using a default MAU name;

d) MAU description: a descriptive string,
e) MAU password: used to protect against unauthorized access to MAU control functions;
f) a call-back routine for state changes as shown in the figure,
g) an optional up-call routine (possibly with other semantics than a clean call-back) which is

used to report internal errors and warnings from the API.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 23 –

Output parameters: none.

Call-back: none.

Exceptions: none.

Errors: errors will be related to various illegal parameter values or system level errors.

5.2.2 Connection open request (MauOpen)

This call is used to request the opening of the MAU-LNA connection and to send identity
information to the LNA.

Pre-condition: MAU parameters defined (MAU_DEFINED).

Post-condition: waiting for LNA (MAU_OPENING) or error state.

Input parameters: optional timeout for connection attempt.

Output parameters: none.

Call-back: state changes shall be reported as described in the diagram. This includes fatally
bad communication parameters.

Exceptions: possible internal resource problems.

Errors: the MAU is in an illegal state. Communication parameters are bad.

This service uses the MAPI_OREQ and MAPI_OACK messages. The result from the
acknowledgement is delivered through the MAU state call-back.

5.2.3 Connection close (MauClose)

This service requests the close of the LNA-MAU session. This is done by closing the
connection to the LNA and cleaning up internal state. The mechanism for closing the connection
is dependent on the T-profile in use.

The closing down will take some time and the MAU will remain in the closed state until the
process is completed. Note that all pending transactions and all MCP connections will be
terminated without individual warning. The API is required to clean up the internal state, but
the application must also do that with any state it maintains.

Pre-condition: MAU is or in the process of being connected to LNA.

Post-condition: MAU disconnected from LNA (MAU_CLOSED).

Input parameters: none

Output parameters: none.

Call-back: state change will be reported to MauState.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 24 – 61162-401/FDIS IEC(E)

Exceptions: none

Errors: the MAU is in an unexpected state.

This service may use the session close message (MAPI_SESSION), but will normally just
close the communication link to the LNA.

5.2.4 MAU state change call-back (MauState)

This call-back routine shall be called each time the MAU changes state. It is also called when
the LNA requests a state change for the MAU or a watchdog return message.

a) EV_LNA_CLOSE: request close, can be denied by a non-zero acknowledgement.
b) EV_LNA_RESET: request restart (close and then open), can be denied by a non-zero

acknowledgement.
c) EV_LNA_KILL: force close (possibly not delivered, but detected as a connection close:

EV_LNA_CONNECTION_DOWN).
d) EV_LNA_STATUS: check status, used by watchdog, The API is required to close the LNA

connection when the application gives a non-zero acknowledgement.
NOTE A negatively acknowledged status request will be handled as a kill, i.e. force a transition to close. A
negatively acknowledged close or reset request will be handled as a status request, i.e. make the MAU remains
open.

The possible events are summarized in the table below. The return value column specifies the
return value that is expected for continuous normal operation (remaining in the open state).

Table 6 – MAU events

Event code Normal return value Description

EV_LNA_CLOSE <> 0 Close request

EV_LNA_CONNECT n/a Connect state change

EV_LNA_CONNECTION_DOWN n/a Communication link down, state change

EV_LNA_KILL n/a Kill command

EV_LNA_NO_CONNECT n/a Connection failed due to timeout or missing LNA

EV_LNA_OPEN_ERROR n/a Port description parameter error

EV_LNA_RESET <> 0 Reset request

EV_LNA_RESTART n/a Ready to re-connect state change

EV_LNA_SESSION n/a Remote client MAU session changes state

EV_LNA_STATUS 0 Status/watchdog request

The EV_LNA_SESSION event is passed to the MAU when a remote MAU, which previously
has established a connection to one of this MAU’s interfaces, dies or changes state. The
session code can be retrieved by reading MCP zero’s session (M_SESSION) attribute value.
The state change information can be got from the last error attribute. The following session
change codes are used:

a) SESSION_C0: the communication link has been restored to normal (no congestion);
b) SESSION_C1: the communication link associated with the session is congested and no

more low priority messages will be accepted for transmission;
c) SESSION_C2: the communication link is also closed for normal priority messages;
d) SESSION_DOWN: the communication link to the remote MAU has been or should be

closed.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 25 –

NOTE 1 The session down code should normally be used to clean up internal state associated with the closed
session (pending transactions mainly, but also session related structures used for example, client authentication).
This may be done by calling the interface connection handlers with a “remote client dead” event. This may be
handled automatically by the API.

NOTE 2 If the MAU continues to send messages on a communication link indicated as congested, this can be
treated as an application error. The LNA may then close all links to the MAU and terminate the session. On the
other hand, the LNA must be able to accept some more messages that may be somewhere in the communication
pipeline without raising this exception.

Pre-condition: MauInitialize has successfully been called to define the call-back routine.
The new state has normally been entered when the event is delivered (except for close
requests, where denial – negative return – makes the MAU stay in the open state.

Post-condition: see above.

Input parameters: new state code and corresponding event code as defined in the figure.

Output parameters: not applicable, zero or non-zero, dependent on event.

Call-back: not applicable.

Exceptions: not applicable.

Errors: not applicable.

5.3 Session management, authentication and congestion control

A session is an association between the local MAU and one remote MAU. This means that
most MCP or interface activities (see next subclause) are also related to a session (the
exception is the anonymous broadcast MCPs). The local MAU cannot manipulate a session
state, but the state of remote MAUs or LNAs define the state of the session.

Sessions are used for two purposes in this standard:

a) for authentication of sender of messages (connections or transactions);
b) for congestion control between two MAUs or between LNA and MAU.

5.3.1 Session control and authentication

The session states are defined by the following events:

a) the creation of the first connection between an MCP or interface on this MAU and another
MAU: This defines the session. No other session-related event is associated with this;

b) any congestion related messages (EV_LNA_SESSION: low or normal priority congestion or
no congestion) changes the “capacity” of the communication link defined by the session.
The local MAU shall adjust its transmission according to these messages;

c) the loss of the connection to the remote MAU causes a session down message
(EV_LNA_SESSION) to be delivered to the MAU. This message means that the MAU must
clean up all states related to the session (close interfaces or MCPs and terminate all
pending transactions). This event signals the removal of the session.

The API may decide whether the session shall be handled as an object in its own right,
possibly with application related services, for example to interrogate the state. Note however,
the required clean-up after a session close. Session management is handled through the
MAPI_SESSION message and through the session field in the general LNA-MAU message. It
is suggested that the API keeps track of the session identifier and makes this available to the
application program (e.g. through the M_SESSION MCP attribute)

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 26 – 61162-401/FDIS IEC(E)

The LNA guarantees that the session identifier is unique to a session and that it is updated
whenever an association changes (also if the remote MAU is disconnected and then
reconnected).

5.3.2 Congestion control (MauSession)

The MAU may issue a congestion notification, either to a specific remote MAU or to the LNA
(session zero). This notification should make the relevant entity stop the sending of low or
normal priority messages. Congestion control does not work for urgent messages.

The MAU cannot rely completely on the congestion control notification and it should be used
mostly between MAUs that have a mutual understanding or between the MAU and the LNA.

The MAU must itself cancel the congestion notification.

Pre-condition: MAU connected, and one or more sessions established.

Post-condition: session marked as congested (or unmarked) by remote MAU and/or LNA.

Input parameters: session to be manipulated, level (congested or normal)

Output parameters: none.

Call-back: none.

Exceptions: none.

Errors: bad input parameters.

This service uses the MAPI_SESSION message.

5.3.3 Request and connection limiting

An alternative way to limit possible congestion is to limit the number of clients or outstanding
transactions on the interfaces. Interfaces can be marked with a maximum number of clients
and pending transactions. These are attribute codes defined with the interface (Table 8). By
setting these attributes, the MAU can limit the number of connections and/or transaction
requests. The mechanism does not work for urgent requests. The limits apply to all MCPs in
an interface.

5.4 Interface and connection point overview

A data object is the abstract representation in the network of connection points that are
defined and served by a MAU. In both server and client MAU, these data objects are
referenced by a MAU connection point (MCP). An MCP in an open state (with a connection
between the server and one or more clients) is necessary to receive or send messages
between MAUs.

The system supports two types of connection points as indicated in Figure 4:

a) the control connection point (Null MCP) that is used by the LNA for status requests, the
watchdog function and MAU state control. This object is created automatically when the
MAU is opened and is normally only visible to the application programmer through the
close, reset, kill and status MAU events. This MCP is established automatically by the API
and LNA. Transactions are handled by the API and transferred to the MAU call-back
routine;

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 27 –

b) application defined interface MCP which is associated with an application level interface.
They can only use the short data object name format, but will additionally have an
interface name. These MCPs are defined in groups, one group for each interface. They
are connected and disconnected in the same groups. Transactions are handled
individually.

MAU

InterfaceNull MCP

Interface
MCP

Figure 4 – Types of connection points

The control MCP does not usually need to be considered by the application programmer. The
clauses following will discuss the services available for the interface MCP. The remaining part
of this subclause will give an overview of MCP attributes.

5.4.1 Special considerations for anonymous broadcast (ABC)

Anonymous broadcasts are not associated to special MAUs. They are messages that can be
sent to or received from any MAU. To facilitate the processing of anonymous broadcasts, the
following restrictions apply:

a) an anonymous broadcast MCP can only be part of an interface called “ABCn”, where ‘n’ is
replaced with one of the numbers ‘1’ to ‘5’. The interface name will determine the
broadcast port used for the transmission and reception of messages. The MAU name is
ignored;

b) the significant number of characters in the MCP name is 8 (the left-most characters). More
characters can be used, but they will be ignored;

c) the message length is limited to 512 octets maximum;
d) the format string is hashed into a 32-bit number.

These restrictions mean (particularly item d)) that there is a possibility that differing data
objects can be mixed at the receiving side. However, the probability should be low and the
design tools should make sure that all ABC entries have different MCP names.

5.4.2 MCP membership in interfaces

One interface MCP will normally be associated one-to-one with an interface. However, it is
possible to define “logical” MCPs that are members of two or more interfaces. This is done by
creating one MCP that is registered as belonging to the different interfaces. This is useful for
general MCPs that can be used in two or more different contexts. If the same MCP is used in
two interfaces, it will be assigned two different MCP identity codes, one for each interface.
The LNA will treat the two identity codes as distinct MCPs, but the application can use the
same attribute values, including call-back functions and storage for both.

5.4.3 MCP attributes

This subclause defines all MCP attributes. The attributes are summarized in the table below.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 28 – 61162-401/FDIS IEC(E)

Table 7 – MCP attributes

Attribute M Type Default Description

M_MCPNAME F mciname_m * The symbolic data object name

M_FORMAT F char8_m* * The format string

M_SEND_STORE void* NULL Output data-buffer

M_RECV_STORE void* NULL Input data-buffer

M_SEND_PACK pack_m NULL Pack-function (marshalling for send)

M_RECV_PACK pack_m NULL Unpack-function (marshalling for receive)

M_PRIORITY int normal Default priority for transactions

M_TRANS_HANDLER eventh_m NULL Transaction-handler

M_TRANS_RCODE val_m 0 User return-code for transaction handler

M_LASTERROR R int32_m Last error code

M_SESSION R word16_m Session ID for current operation

M_INTERFACE R val_m Return interface reference or NULL

M_CAN_CONFIGURE bool_m FALSE TRUE if remote configurable allowed

The columns from left to right are:

– the attribute column specifies a symbolic identifier for the attribute in question;
– the ‘M’ column specifies how the attribute can be modified; an ‘R’ in this column means

that the attribute is set by external events, for example a communication error, and an ‘F’
that the attribute cannot be changed after a connection attempt succeeded. No letter in
this column means that the attribute can be changed at any time;

– the type column specifies the type of the attribute. The types are defined in 3.4;
– the default column specifies the default value the attribute gets if it is not explicitly

defined. An asterisk (‘*’) in this column means that the attribute must be specified;
– the description column gives a short description of the attribute.

The null MCP shall support these attributes, but the interpretation of some of the values may
depend on context.

Note that the remotely configurable flag is only used by special companion standards for
remote configuration. It is included here for completeness and need not be implemented in all
APIs.

5.4.4 Modify MCP attributes (McpGet, McpSet)

These two services are used to read and modify MCP attributes. This service can be called at
any time and also when the MCP is open; although only attributes that are marked as connect
modifiable in Table 7 can be changed when the MCP is open or opening.

Note that different variants of these routines may be necessary to modify attributes of
different types, for example it may be necessary to specify a special set and get routine for
function references.

NOTE For some implementations of the API, it may be convenient to code some of the attribute retrieval or
modification routines as specific services associated with MCPs or interfaces. This may be particularly appropriate
for object-oriented programming languages where some of the attributes can be available as object attributes or
modifiable through specific methods.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 29 –

Pre-condition: MCP is created(MCP_CREATED).

Post-condition: no change.

Input parameters: data object attribute code and optionally new value as listed in Table 7. Only
those parameters listed with ‘M’ can be changed when the MCP is open.

Output parameters: old attribute values can be returned from the get service.

Call-back: none.

Exceptions: none.

Errors: unknown MCP or attribute code, illegal MCP state.

5.4.5 Interface attributes

This subclause defines all interface attributes. The attributes are listed in the table below.

Table 8 – Interface attributes

Attribute S M Type Default Description

M_MAUNAME A F mauname_m NULL The symbolic server MAU name

M_IFNAME F ifname_m * The symbolic interface name

M_IFCNAME F ifname_m NULL The name of the class of the interface

M_DESC F char8_m* NULL A description string for the interface

M_IS_ACCEPT F bool_m FALSE TRUE if accept type

M_PASSWORD F password_m NULL The interface password

M_CONN_HANDLER eventh_m * Connection handler

M_CONN_RCODE val_m 0 User return-code for connection handler

M_TIMEOUT C F int32_m 0 Connection timeout (ms)

M_TRANSQUEUE A F word16_m 0 Length of transaction queue

M_CLIENTS A F word16_m 0 Number of clients

M_LASTERROR R int32_m Last error code

M_SESSION R word16_m Session ID for current operation

M_CAN_CONFIGURE bool_m FALSE TRUE if remotely configurable

See 5.4.3 for a description of the columns and codes. The S column specifies if the attribute
only has an interpretation for connect (‘C’) or accept (‘A’) side interfaces. For interface MCP,
it is necessary to interrogate the interface attributes.

Note that the remotely configurable flag is used only by special companion standards for
remote configuration. It is included here for completeness and need not be implemented in all
APIs.

5.4.6 Modify interface attributes (IfGet, IfSet)

These services are used to read and/or modify interface attributes. This service can be called
at any time, also when the interface is open.

See 5.4.4 for more information on function and possible implementations.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 30 – 61162-401/FDIS IEC(E)

Pre-condition: interface is created(IF_CREATED).

Post-condition: no change.

Input parameters: data object attributes as listed in Table 8. Only those parameters listed
with “M” can be changed when the interface is open or opening.

Output parameters: attribute values can be returned from the get service.

Call-back: none.

Exceptions: none.

Errors: illegal attribute codes or values, MCP in wrong state.

5.5 Interface management

The state diagram for an interface is shown below.

IF_CREATED

IF_PENDING

IF_CONNECT

IfOpen
wait for connection

IfTable

EV_IF_DOWN
Remote server down

IfClose
Closed

Denied by LNA, retry

EV_IF_NO_CONNECT
EV_IF_NOT_FOUND

1

2

3

Define interface

IfRemove
Delete

LNA down
Connect MAU

EV_IF_COPEN
EV_IF_CDOWN

Change in sessions

EV_IF_OPEN
Transactions start

Figure 5 – Interface state transitions

The states are:

a) IF_CREATED: the interface has been defined by the application, but is not yet connected.
The definition can be done while the MAU is in the created state (without connection to
the LNA). Note also that if the LNA connection goes down, all interfaces will automatically
be set to this state;

b) IF_PENDING: the interface attributes have been sent to the LNA. The MAU is waiting for
acceptance. There is a difference here between accept and connect objects:
1) accept object attributes are only exported to the local LNA. The object will only stay in

this state until the local LNA accepts or denies the registration. This will normally only
happen if there is an identical interface or MCP already defined by this MAU. A
connection timeout has limited utility,

2) connect interface attributes are exported to the system for connection to a remote
MAU’s accept interface. The interface will stay in this state until the remote MAU is
found and has accepted or denied the connection or until the timeout triggers;

c) IF_CONNECT: the interface has been registered and it is possible to receive or initiate
transactions.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 31 –

States b) and c) are only used when the MAU is in the open state. The closing of the MAU will
transfer all interfaces back to created. The API is required to do necessary state clean up and
terminate all pending transactions. The application is required to do a similar clean-up in its
data structures.

This standard requires that all MCPs in a requested interface are accepted on the server side
for the connection attempt to be positively acknowledged. This means that the client side
interface must be a true subset of the accept side interface. Errors of any type shall be
reported to the application.

If the MAU enters the error state, no call-backs will be delivered, neither on pending
transactions nor closed connections. The interfaces will be in an undefined state.

The reconnection of a broken interface connection (from state c) to b) and back to c)) will be
done automatically by the LNA. Note that the timeout, if specified, will bring the interface to
state a), also after an automatic LNA reconnect.

The following subclauses define the services that are available for interface management.

5.5.1 Define interface (IfTable)

This service is used to define MCPs and MCP attributes for later export to the LNA. It defines
a new interface and sets it to the created state. It can in principle be called at any time (see
“M” marked attributes in clause 5.4.5), but it is most useful for initial creation. It specifies a set
of attributes for the newly created data object.

Pre-condition: MAU is created(MAU_DEFINED).

Post-condition: IF_CREATED.

Input parameters: the attributes are partly common attributes to all MCPs in the interface and
partly attributes associated with each MCP. It is suggested that the input format is in the form
of a table that lists interface attributes, MCP attributes and attribute values in a format that
can be automatically generated by a computer tool.

Legal interface attributes and attribute value types are those listed in Table 8. MCP attributes
are listed in Table 7. The MCP attributes marked with ‘F’ cannot be set in an interface
definition. Attributes in both tables marked with an asterisk must be defined before the
interface can be opened.

Output parameters: interface reference.

Call-back: none.

Exceptions: none.

Errors: illegal MAU state, illegal interface state, illegal attributes or attribute values.

5.5.2 Remove interface (IfRemove)

This service is used to remove an interface, its MCPs and all associated state. It is only legal
to do this when the interface is in the created state.

Pre-condition: IF_CREATED.

Post-condition: interface deleted.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 32 – 61162-401/FDIS IEC(E)

Input parameters: interface reference.

Output parameters: none.

Call-back: none.

Exceptions: none.

Errors: illegal interface reference or state.

5.5.3 Establish interface connection (IfOpen)

This service exports the definition of an interface to the LNA. It shall send the relevant
messages to the LNA and wait for its reply. Two cases must be considered:

a) an accept type interface will cause the creation of network data objects and is handled by
the local LNA alone. There are few restrictions on how the interface and the MCPs are
constructed;

b) a connect type interface shall be connected to a set of network data objects and needs to
match the intended targets in all connection oriented attributes (names and format
strings). For the connection attempt to succeed the following pre-requisites exist:
1) the connection related interface attributes must match on both sides,
2) the connection related attributes in all the client defined MCPs must match (a subset

of) the server defined MCPs. The client does not need to connect to the whole server
interface, but all MCPs in the client interface must connect to a corresponding server
MCP for the connection to succeed.

Pre-condition: interface is created(IF_CREATED) and all necessary attributes are defined.

Post-condition: IF_PENDING and then possibly IF_CONNECT

Input parameters: all connection-related attributes from the definition of the interface and its
MCPs are used in executing this service. A time-out different from zero will make the LNA
give up its connection attempt when the specified time has expired. Zero will make the LNA
keep on trying to reconnect. The time-out has no function for accept type interfaces.

Output parameters: none.

Call-back: the interface connection handler is called at all further interface state changes.
Transaction handlers are defined for each MCP. These will be called on incoming
transactions.

Exceptions: timeout and format errors. The LNA may give other interface related error
messages on some occasions. All exceptions will be delivered to the connection handler.

Errors: illegal interface state, illegal or undefined attribute values, illegal interface reference.

This service uses the MAPI_IREQ and MAPI_IACK messages. The result from the
acknowledgement is passed back through the interface connection call back routine.

5.5.4 Close interface (IfClose)

This service removes an interface from the connected state. It can be used in the pending or
the open state. The service will block any further transactions on this object. This service will
signal to all remotely connected MAUs (server or clients) that the interface is down.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 33 –

Pre-condition: interface is pending or open(IF_PENDING, IF_CONNECT).

Post-condition: IF_CREATED.

Input parameters: reference to the interface.

Output parameters: none.

Call-back: none.

Exceptions: none.

Errors: illegal interface state, illegal interface reference.

This service uses the MAPI_IREM message.

5.5.5 Interface state change call-back (InterfaceState)

All state changes for the interface that are not an immediate effect of a service call will be
reported to the interface connection call-back routine. In addition, it will be called when a
remote MAU tries to connect to the interface.

Pre-condition: interface is pending or open(IF_PENDING, IF_CONNECT).

Post-condition: state has changed immediately before call.

Input parameters: event code and interface reference, user defined reference (value of
attribute M_CONN_RCODE). All event codes are listed in the table below.

Table 9 – Interface events

Event code Return value Description

EV_IF_OPEN n/a Interface open

EV_IF_DOWN n/a Interface closed from remote side

EV_IF_COPEN 0 Client requests connection to accept interface

EV_IF_CDOWN n/a Client disconnects from accept interface

EV_IF_NO_CONNECT n/a Attribute values inhibit the establishment of the interface

EV_IF_NOT_FOUND n/a Connection timed out or was denied due to, for example
high load

NOTE The EV_IF_CDOWN event is only delivered (as an A-profile message) when the remote client closes down a
connection in a controlled manner. If the remote MAU dies, this will be notified through a session close event to the
MAU (see below).

The no connect code is used when attribute values inhibit the connection attempt, for example
password errors, badly formatted names, etc. The not found code is used when the attempt
was aborted because the data object was not found (timeout) or because connection was
temporarily denied. Details about the cause can be by examining the last error attribute value
for the interface.

The client connection attempt can be denied by the server for any reason. The normal
procedure will be to have a separate authentication interface (see the companion standards)
that is used to authenticate operator and/or physical host computer on the client side. By
comparing the session identifier (M_SESSION attribute) for the new interface connection

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 34 – 61162-401/FDIS IEC(E)

attempt and the previous authentication transaction, the identity of the client can be
established and used to deny or accept the connection attempt.

The death of the local LNA should cause all interfaces to go to the created state, possibly
without call-back to the connection handlers. The call-back will be dependent on the API
implementation. The death of a remote client MAU will only be reported to the MAU state
change handler (see 5.2.4) as a session close event. If necessary, the application should use
the session down event to reset the state related to remote clients. The handling of these
cases may vary between APIs.

Output parameters: client connection attempts can be denied by returning a non-zero value.

Call-back: not applicable.

Exceptions: not applicable.

Errors: not applicable.

5.6 MCP transactions.

Transactions look somewhat different for the different types of MCPs and whether it is seen
from a client or a server. This subclause will be further sub-divided to define the functionality
and semantics of each of the main group of transactions. Table 10 summarizes the different
transaction types. Transactions will be described for both client and server type MCPs in each
subclause. Differences will be noted where appropriate.

Table 10 – Transaction types

 Transaction type Client sends Server sends Server later initiates

Function Data W Data R

Read Request Data R

Write Data W Acknowledge

Non-acknowledged write Data W

Subscribe Request Data R Data R to all clients

Broadcast subscribe Request Data R Data R to all (unreliable)

ABC subscribe Data R Data R to all (unreliable)

Individual subscribe Data W Data R Data R individually

All transactions are associated with one or two data structures: data W and data R. Data W is
sent by the client, data R is sent by the server, usually as an effect of the arrival of data W.
This is typical of the basic function type transaction. The read transaction has an empty data
W from the client (it is a request for data only). The write type transaction contains data from
the client to the server and a per transaction acknowledgement, without data, from the server.
To save bandwidth, the non-acknowledged write does not allow the server to send an
acknowledgement. This group of transactions terminates when the last message has been
processed by the receiver.

For subscribe type transactions, the server may send more data R after the first
acknowledgement. The subscribe transactions do not terminate until explicitly cancelled,
either by a cancel request or by the death of the client or server. Note that the individual
subscribe allows the client to send data to the server. This data can be used to configure
different replies (also for server initiated transmissions) for different clients. Other subscribe
forms send the same data structure with the same contents to all listening clients. Anonymous
broadcast (ABC) subscribe does not use the normal client/server paradigm. It allows any node
to send to or listen on any other node, without knowing the identity of either.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 35 –

Each transaction (except ABC subscribe) is initiated by the client by sending a message,
possibly with some application specific information to the server. The message is handled by
the server through its transaction call-back routine which may generate an acknowledgement
to the client. The acknowledgement is then finally processed by the client in its transaction
call-back routine. Different variants of this pattern will be used for the different types of
transactions.

These services uses the messages described in 8.2.4.

5.6.1 Function type transactions

These transactions are of the following type:

a) function call with application information from client to server and back again;
1 read request with application information only from server to client;
1 write with application information only from client to server, but with acknowledgement

from server.

The state diagrams for the client (left) and server (right) side transaction are shown in
Figure 6.

TransActivate
Non-acknowledged?

TransCancel

Wait for acknowledgement MT_PENDING

EV_TRANS_REQ
Read input

Imm. reply or TransAck
EV_TRANS_CANCEL

Delete transaction object

MT_CANCEL

EV_TRANS_CANCEL
EV_TRANS_ACK

Delete object

EV_TRANS_ACK
EV_TRANS_FAILED

Delete object

MT_PENDING

No
Create transaction object

Yes
Finished

Figure 6 – Function type transaction states

On the client side, the object is created when the client initiates a transaction through a call to
McpActivate. This causes the request and a write data structure to be sent to the server.
When received by the server, the request will be delivered to the server’s transaction handler
and instantiated as a transaction object. The server may send an acknowledgement
immediately by signalling this on return from the handler or delay the acknowledgement until
later. For later acknowledgements, the server must issue a call to McpAck. For late
acknowledgement, the server’s transaction handler may be called if the client cancels the
transaction. The cancellation can also be caused by a timeout. In both cases, an
EV_TRANS_CANCEL event is delivered.

The client may cancel a pending transaction by calling McpCancel. The client may also
specify a timeout that can be used by the LNA to cancel the request. Both events causes a
cancellation message to be sent to the server. In the timeout case, the notification will be
delivered to the client as an EV_TRANS_FAILED event.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 36 – 61162-401/FDIS IEC(E)

The cancellation will take effect for the client as soon as it has been processed by the client’s
LNA and returned as a cancellation acknowledge (EV_TRANS_CANCEL). However, the
cancellation may come after the request has been returned by the server (EV_TRANS_ACK), in
which case a negative cancellation acknowledge is delivered to the client, after the data
acknowledge (see sequence diagrams). The negative acknowledge will then refer to no
transaction object and should normally be ignored by the API or the application.

5.6.2 Non-acknowledged write transactions

This transaction can be seen as a one-way write. No acknowledgement is delivered from the
server. The transaction is also stateless. It consists of a message that leaves no trace and it
cannot be timed out or cancelled.

Note that delivery is reliable as long as the session between client and server is intact.

5.6.3 Subscribe type transactions

These transactions are of the following types:

a) normal subscription where the server sends one R-data message to the local LNA which
copies the message to all clients via reliable links. On initial subscription, the server will
send one R-data message to the subscribing client alone;

b) broadcast subscribe which is identical to the previous, except that the LNA repeats all but
the initial R-data message via an unreliable broadcast link. The initial exchange goes as
for a normal subscription;

c) anonymous broadcast (ABC) where sender is unknown to receiver. In this type of
transaction, there is no initial request and acknowledgement.

The state diagrams for the client (left) and server (right) side transaction are shown in
Figure 7. Note that the server side diagrams are divided in two: A general object (upper) that
applies for all subscription types and an initial request transaction object (lower) that only
applies to normal subscriptions (not broadcast).

The server side does not usually see the identity of the clients. All operations are performed
independently of what or how many clients there are. This means that the server side most of
the time needs a single transaction object that conceptually is created when the MCP is
connected. Per client transactions are received as the initial request (EV_TRANS_REQ) only
and only on normal subscriptions (not broadcast types). The server must reply to these
requests as for a normal read request. This means that the acknowledgement can be delayed.
When the first request is acknowledged, the client MAU is added to the subscriber list by the
LNA and all R-data messages are sent to all clients as a result of TransAck calls. The LNA
takes care of distributing the data messages as necessary. Note also that the server has no
possibility to check if some clients have cancelled their connection. This is handled by the
LNA without involving the server MAU.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 37 –

MT_PENDING

TransActivate
ABC subscribe?

EV_TRANS_SACK
Wait for more ack

MT_SUB

EV_TRANS_CANCEL
EV_TRANS_FAILED
Delete obj.

MT_SUBSCRIBE

TransCancel
Wait for ack

EV_TRANS_ACK
Wait for more

MT_CANCEL
EV_TRANS_[S]ACK

Wait for ack.

EV_TRANS_FAILED
Delete obj.

TransAck
Send data

MCP connection
Create sub. object

Close MCP
Delete obj.

Yes
Wait for
data

No
Wait for ack.

MT_PENDING

Create trans. object

Ack
Send init data

EV_TRANS_REQ

Figure 7 – Ordinary subscribe transactions

The client initiates the transmission of R-data from the server by using a TransActivate
call. The result of this call is that one individual R-data message is received
(EV_TRANS_SACK – as the result of the EV_TRANS_REQ event on the server side). Later, only
collective messages are received (EV_TRANS_ACK) as results of the server’s TransAck
activations. The client can cancel the subscription by using the normal cancellation service.
One or more data messages may still arrive during the period the client waits for the
cancellation to take effect. Note also that a timeout, in principle, can terminate a subscription
attempt. However, as the server answers immediately to a subscription request, this should
normally be a rare occurrence.

5.6.4 Individual subscribe transactions

Individual subscriptions can be looked at as a variant of the normal function type transactions.
They let the server maintain a list of client specific transaction objects and answer to these
individually. The state transaction diagrams are shown in Figure 8, with the client at the left
side and the server at the right.

MT_PENDING

TransActivate
Create trans. object

EV_TRANS_SACK
Wait for more ack

MT_ISUB

EV_TRANS_CANCEL
EV_TRANS_FAILED
Delete obj.

MT_SUBSCRIBE

TransCancel
Wait for ack

EV_TRANS_ACK
Wait for more

MT_CANCEL
EV_TRANS_[S]ACK

Wait for ack.

EV_TRANS_FAILED
Delete obj.

TransAck
more data

TransAck/Imm. ack.
Send first data

EV_TRANS_CANCEL
Delete obj.

MT_PENDING

EV_TRANS_REQ
Read input

Figure 8 – Individual subscribe transaction states

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 38 – 61162-401/FDIS IEC(E)

The difference from the normal subscription is that the server side treats each transaction as
a separate object and can send data to each client individually. The state on the server side
differs from the function type transaction objects in that they in addition to the delayed
acknowledgement state (MT_PENDING) need a state for subscription in progress (MT_ISUB).
Note that the transition from pending to subscribed either happens when an immediate
acknowledgement is given or at a later stage, when a delayed acknowledgement is sent. On
the client side, the states are identical to the normal subscription states.

5.6.5 Client side initiation (TransActivate)

This service creates a transaction object on the client side. Any outgoing data (W data) must
be ready before the service is called. It is possible to specify a time-out for the transaction. It
is also legal to cancel the transaction.

Note that time-out and cancellations may apply to the client side. A timed out or cancelled
transaction will often have been processed by the server and an acknowledgement sent. In
this case, the server will normally not get the cancellation message.

Pre-condition: MCP is connected (MCP_OPEN). W data is ready if applicable.

Post-condition: new transaction object created.

Input parameters: W data if applicable (normally via the output store MCP attribute).

Output parameters: reference to transaction object.

Call-back: return value, cancellations or timeout.

Exceptions: see call-back.

Errors: bad parameters.

5.6.6 Transaction cancellation (TransCancel).

This service cancels a transaction from the client side.

Pre-condition: transaction object exists.

Post-condition: waiting for acknowledge.

Input parameters: reference to transaction.

Output parameters: none.

Call-back: cancellation. Note that return value(s) may arrive before cancellation acknowledge.

Exceptions: none.

Errors: bad input parameters.

This service uses the MAPI_CREQ and MAPI_CACK messages. The result is reported back to
the transaction call-back routine.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 39 –

5.6.7 Client side transaction state change (TransClientState)

This service notifies the client of the completion, cancellation or time-out of a transaction. The
service will get access to any incoming data (R-data).

The client’s transaction handler is normally defined as one of the MCP attributes. However, a
specific API implementation may, for example define the transaction handler when the
transaction is initiated.

Pre-condition: existing transaction object.

Post-condition: transaction object deleted, except for subscription objects.

Input parameters: incoming R data, if any. Event code as listed in the table below.

Table 11 – Client transaction events

Event code Return value Description

EV_TRANS_ACK n/a Transaction completed (late subscription
R-data)

EV_TRANS_SACK n/a First subscription R-data

EV_TRANS_CANCEL n/a Transaction successfully cancelled

EV_TRANS_FAILED n/a Transaction failed (timeout)

Output parameters: none.

Call-back: not applicable.

Exceptions: not applicable.

Errors: not applicable.

5.6.8 Server side transaction state change (TransServerState)

NOTE The server’s transaction handler must be defined as one of the MCP attributes. Client transaction requests
will arrive independently of the activities of the server.

This service notifies the server of an incoming transaction. The service will get access to any
incoming data (W data) and must prepare any outgoing data (R data) before terminating.

Pre-condition: MCP is connected (MCP_OPEN) and a client has connected.

Post-condition: dependent on transaction type, see state diagrams.

Input parameters: incoming W data, if any. Event code as listed in the table below.

Table 12 – Server transaction events

Event code Return value Description

EV_TRANS_REQ n/a Transaction request from client

EV_TRANS_CANCEL n/a Transaction cancelled by client

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 40 – 61162-401/FDIS IEC(E)

Output parameters: outgoing R-data, if any. Flag to send outgoing data when appropriate.
This operation is handled by the API and is API dependent.

Call-back: none.

Exceptions: none.

Errors: none.

5.7 Bulk data transfer

Bulk data transfer is a mechanism whereby large amounts of unformatted data can be
transferred in a reliable and sequential stream. Bulk data transfers are performed via special
purpose data sinks or sources that are provided by the T-profile directly.

To use bulk data transfer, the MAU has to have access to the same T-profile as that used by
the LNA. This can in principle be achieved independently of the conformance class of the
MAU [IEC 61162-400]. However, the T-profile must support the priority mechanism used by
the LNA and should also support the same level of redundancy.

The bulk transfer links are established directly through the T-profile. However, the companion
standard will define a bulk data transfer address exchange interface. The necessary
prerequisites are a common convention for the specification of network addresses. This is
described in the T-profile. The API will normally provide services for establishment of bulk
source and sink ports.

6 Functional requirements for LNAs

This clause specifies the basic functionality requirements for the LNA. It is mainly written to
assist the designers of the LNA, but it also contains normative descriptions of various
relationships between protocol entities.

6.1 Context diagram and functional overview

The context diagram for the LNA is shown in Figure 9.

LNA

LNA-MAU

MAUs
req/ack/data

req/ack/data

data(/ack)

(req)

Other LNAs

req/ack/data

bc data

req/ack/data

Figure 9 – Context diagram for LNA

The LNA’s main task is to act as a multiplexer for messages from MAUs and demultiplexer for
messages to MAUs. All MAU-to-MAU traffic goes via one or two LNAs. One LNA is used if the
MAUs are clients of the same LNA, otherwise two LNAs are used. To work as a message
handler, the LNA also has to take care of session management, both with regards to MAUs
and to MCPs.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 41 –

The LNA must also provide name look-up functionality. The data objects that are used for
connection establishment are only identified with various textual attributes. The LNA must
provide the functionality to map data object attributes to network level addresses (of other
LNAs) and MCPs on client and server MAUs.

The LNA’s tasks can be summarized as

– MAU name look-up:

− maintain a database of the MAUs that are served by the local LNA. Respond to MAU
name interrogations from other LNAs,

− maintain a database of remote MAUs and their location. Perform name look-up, i.e.
broadcast requests when a required remote MAU is not already in the database,

− manage remote LNA sessions (connect to and disconnect from remote LNAs);
– MAU session control:

− manage MAU sessions. Let MAUs connect, change their state and disconnect,

− manage data object connections. This has two aspects: export local data object
definitions to the network and connect local client MAUs to remote data objects;

– Message multiplexing and de-multiplexing:

− manage transactions. The LNA services all transactions that relate to local MAUs,
either as clients or servers.

– Other services:

− give diagnostic services through the LNA MAU.

MAU name look-up is based on unreliable broadcast. None of the transmitted information is
guaranteed to reach all or any remote LNAs. All functionality in the LNA name look-up part is
based on re-transmitting requests and responses until the system state has stabilized. This
means that the MAU name information exchange must be modelled as a process where
messages can arrive at any time.

Other traffic between MAUs, remote LNAs and the local LNA is generally of two types:

a) request/acknowledge pairs involving the local LNA, or
1 data transport messages that are just routed through the LNA. Both are normally sent on

reliable point to point links. The exception is broadcast subscription messages that are
sent on an unreliable broadcast link.

One LNA shall be able to service two local MAUs that are communicating. This standard will
assume that this type of communication uses the normal LNA-LNA message types and is
performed through a loop-back communication link implemented internally in the LNA.
Although convenient for the designer, this is not mandatory. Other solutions conforming with
the standard can be envisaged.

The functionality of the LNA MAU is described in the companion standard. It shall be able to
provide an overview of the application level network of MAUs, of traffic related statistics and
various other parameters. It shall have the functionality of any normal MAU, but shall be given
a unique name as described in 8.4.3.5.

6.2 MAU name management (MauAck, MauRequest, SessionClose)

The LNA is required to maintain an internal database of MAUs known to it. This includes local
as well as remote MAUs. The database shall also be made available to the LNA MAU.
Associated with this database shall be a MAU name function that provides the following
services:

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 42 – 61162-401/FDIS IEC(E)

a) provide look-up functionality for local MAUs that search for a remote MCP server. Each
request (MauRequest) shall have an individual overall timeout and shall be acknowledged
(MauAck) either at timeout or when the MAU was found. These requests and acknowl-
edgements are provided and used by other functional components of the LNA;

1 provide MAU connection management service, establishing the MAU level connection with
LL_MAUREQ and LL_MAUACK messages;

1 a session close reporting function (SessionClose) that informs all other functions in the
LNA about the closing down of a remote or local LNA;

1 a general reporting service to other LNAs about which MAUs this LNA serves or has
ceased to serve. Local MAU state is reported from the MAU management function with
NewMau. General broadcast information is sent via CC_DEFMAU, CC_DEADMAU and/or
CC_WATCHDOG. Directed information is sent to all connected LNAs with LL_MAUACK(N)
messages or to MAU-requesting LNAs with LL_MAUACK messages.

Figure 10 shows the state transition diagram for MAU definitions in the database. Each MAU
is represented with exactly one state diagram (see note below). The state MAU_LDEFINED
represents a defined local MAU and the state MAU_DEFINED represents a defined remote
MAU. The state MAU_UNDEFINED represents pending requests for a (possibly remote or not
yet connected local) MAU. The event labels typeset in courier represent incoming messages
to the LNA. The courier action labels represent outgoing messages.

Other states are MAU_FOUND for MAUs that have been reported to exist on an LNA, but has
not yet been confirmed. MAU_HEARD is an optional state which can be used to store
information from name broadcasts that is not immediately useful.

MAU_UNDEFINED

MAU_FOUND

LL_MAUACK

MAU_DEFINED

Timeout
CC_DEADMAU

NewMau(N)
CC_DEADMAU

LL_MAUACK(N)
SessionClose

CC_DEFMAU MAU_LDEFINED
CC_METOO

NewMau
CC_DEFMAU

CC_DEFMAU

CC_REQMAU

NewMau
MAPI_AACK
CC_DEFMAU

Timeout
LL_MAUACK(N)

Timeout
CC_REQMAU

CC_DEFMAU

LL_MAUREQ

MauRequest
CC_REQMAU

MauAck

MauAck(N)
Timeout

Dead LNA
LL_MAUACK(N)

SessionClose

MAU_HEARD

MauRequest
LL_MAUREQ CC_DEFMAU

Figure 10 – LNA’s MAU database state definitions

NOTE If more than one local MAU requests a connection to the same remote MAU (via a sequence of calls to
MauRequest), only the first local MAU's call should lead to an exchange of MAU request/acknowledge messages.
For the following MAUs one can immediately start on the interface connection attempt or wait until the first MAU's
connection attempt succeeds or fails.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 43 –

6.2.1 Duplicate MAU names

The LNA will check its database for duplicate MAU names, but it will not inhibit the creation of
MAUs with names that are already registered as long as no more than one of them is local. In
the case of two local MAUs with the same name, the latest to register will be denied. In the
case of duplicates with one of them being remote, this shall be signalled by broadcasting a
CC_METOO message. It shall also update its database with the name pointing to the latest
local MAU identity.

Note that duplicate MAU names, even when handled on two different LNAs cause problems
when establishing new connections to the MAU. The MAU that the connection is established
to will depend upon which of the MAUs is first selected by the connecting LNA. This will, in
general, be arbitrary. Existing connection will not be influenced by the addition of a new MAU
with the same name. However, once the old MAU dies or disconnects, all connections are
immediately moved over to the newer MAU. This mechanism can in principle be used to
create functional redundancy.

6.2.2 Local MAU names

Local MAUs are added to the database in the MAU_LDEFINED state when they connect to the
LNA (NewMau). The LNA shall immediately send out a name broadcast. The same applies
when a local MAU closes and is removed from the database. A broadcast shall immediately
be sent, together with a reliable LL_MAUACK(N) message to other connected LNAs. The LNA
shall inform all other LNAs that maintained sessions with the dead MAU (through local MAUs
that acted as servers or clients to the dead MAU). It is allowed to send the information to all
remote LNAs. The LNA must at all times maintain all known and valid local MAU names in its
database. The information to other LNAs shall also be sent when remote LNAs request
information about MAUs in the database.

Relevant messages for name reporting are:

– CC_DEFMAU: used to inform remote LNAs about a new MAU;
– CC_METOO: used to inform remote LNAs that a duplicate MAU name has been detected;
– CC_DEADMAU: used to inform other LNAs that a local MAU has been removed;
– CC_REQMAU: used by remote LNA to query this LNA about a MAU location;
– CC_WATCHDOG: similar function as DEFMAU and REQMAU, but with somewhat different

semantics (see 6.3.4);
– LL_MAUACK(N): used by local LNA to notify other LNAs about the death of a local MAU

(session close).

The messages used to verify and deny MAU location at a given MAU are used in conjunction
with interface or MCP connection establishment. In addition to the state transition diagram
shown above, the reader is referred to the appropriate sequence diagrams.

6.2.3 Remote MAU names

The state diagram shown in Figure 10 also applies to the identification of remote MAUs. The
LNA needs to maintain a database of remote MAU names and locations, i.e. the physical
network address of the MAU’s LNA. This database shall, as a minimum, contain all the remote
MAUs connected to by local MAUs (all sessions, see 5.3). The database can also contain
information about “heard about” MAUs, these are put into the MAU_HEARD state. This state
can be used to speed up connection attempts by using information already being transmitted
in the system. If this state is used, the LNA should have a kind of time-out mechanism to
remove old and expired MAU names from this state. Reported dead MAUs must also be
removed.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 44 – 61162-401/FDIS IEC(E)

Each time one of the LNA’s MAUs requests a connection to a remote MAU, the LNA will
search in the database for the location of the remote MAU. If the location is not found in the
database, the LNA shall flag the MAU as undefined (MAU_UNDEFINED) and broadcast a
MAU request message to the other LNAs. Other LNAs will send solicited (as a response to the
above name query) and unsolicited information about the status of their MAUs (CC_DEFMAU).
Any match should move the requested MAU to the MAU_FOUND state.

The LNA shall send periodic requests for undefined MAUs and it shall continue to do this until
all pending connection attempts terminate, either by the MAU being found or by connection
request timeout. The periodic requests should preferably be sent in CC_WATCHDOG messages,
but they can also be sent in CC_REQMAU messages. The period for transmission shall be
increased to avoid broadcast storms during system initialization. The transmission intervals
should be as follows:

• first request shall be sent immediately;

• second request after 1 s (RETRY_INTERVAL);

• third and fourth request with intervals of twice the retry interval after the second attempt;

• fifth and sixth requests with intervals of three times the retry interval after the fourth
attempt;

• further requests 5 s to 10 s (1 to 2 times WATCHDOG_INTERVAL) apart, depending on the
number of missing MAUs and synchronization with the watchdog function.

In addition to these intervals, each individual MAU request will have its own timeout interval.
Acknowledgements, positive or negative, shall be given at this time, no later. The actual
semantics of this function are dependent on the functionality of the LNA and are closely linked
to the function of connect MCP and interface management.

The overall MAU interrogation interval is set so that it shall be possible to synchronize the
requests to the transmission of the CC_WATCHDOG message.

When a remote LNA reports the missing MAU name, the MAU is put in the MAU_FOUND
state. In this state, the local LNA checks the information by interrogating the remote LNA.
This is done by sending the LL_MAUREQ request. The answer shall be a positive or negative
LL_MAUACK. If the acknowledge is negative (no such MAU exists) or if the connection to the
LNA goes down, the MAU will be reset to the MAU_UNDEFINED state and the request
process continued. The retry intervals may or may not be reset to their previous state. If the
acknowledgement is positive, the MAU is moved to the MAU_DEFINED state, and the
connection attempt can continue.

The MAU is removed from the MAU_DEFINED state if the connection to its LNA fails or if the
LNA reports the MAU dead. It shall also be removed if no more connections to the MAU exist
and it is reported dead by a CC_DEADMAU message. The MAU definition is also moved from
the defined state if a local MAU connects with the same name. In this case, the new state is
locally defined, but the connections to the remote MAU are kept.

The following data messages from other LNAs will indicate invalid state information in the
remote MAU database:

– LL_MAUACK (negative). Used by remote LNA to report that the requested MAU was not
found or that it died.

The death of an LNA shall also be interpreted as the death of all MAUs that the LNA serves.

The following name look-up messages (BC) are used between LNAs:

– CC_REQMAU: used by local LNA to query other LNAs about a remote MAU location;
– CC_DEFMAU: used by remote LNAs to inform about a new or requested MAU;

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 45 –

– CC_METOO: used by remote LNAs that have a duplicate MAU name in their database;
– CC_DEADMAU: used by remote LNAs to signal that a remote MAU has been removed;
– CC_WATCHDOG: alternative to all above except me too message.

The LNA shall, if possible, report all received messages about duplicate MAUs, for example
on a diagnostic console or to the LNA MAU.

All incoming requests for remote MAUs shall be checked against all MAU definitions in any
state in the data base. This is not shown explicitly in the state transition diagram. It is
important to design the LNA so that consistency in the data base is kept, particularly between
locally and remotely defined MAUs.

6.3 LNA-LNA session management

The LNA is required to periodically check the liveness of all connected LNAs. This is done by
broadcasting a status report and listening to other LNAs’ status reports. The LNA is also
required to maintain an up-to-date list of known LNAs. This list shall be made available to the
LNA MAU. The below diagram describes the known LNA’s state changes.

Note that the dead state is optional in that the LNA can remove disconnected LNAs directly
rather than keep them as dead. It is, however, useful for system management to keep a
record of known, but dead LNAs. The list of dead LNAs, if used, should be purged, for
example by using a timeout for old definitions.

LNA_HEARD

Found by broadcast
Define as heard about

Connected to
Define as known

LNA_KNOWN

Detected dead
Reported dead

LNA_DEAD

Timed out

Figure 11 – LNA states

See also 6.3.4 for more information about the LNA-LNA watchdog function.

6.3.1 Heard about LNA

The broadcast messages that can report an LNA are:

a) CC_DEFMAU: a remote LNA reports its MAU;
b) CC_WATCHDOG: general watchdog messages sent by other LNAs.

6.3.2 Known LNA

A remote LNA shall only be defined as known when the communication link arbitration phase
is completed. This is handled by the T-profile. This phase shall ensure that only one link is
established between the two LNAs. Arbitration is necessary when two LNAs are connecting to
each other simultaneously. The arbitration is done by the T-profile.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 46 – 61162-401/FDIS IEC(E)

6.3.3 Dead LNA

The events that can be used to detect a dead LNA are the following:

a) the connection from this LNA to a remote LNA is detected dead by T-profile functionality.
See below for more details;

1 CC_WATCHDOG: a message sent from other LNAs reports a “heard about” LNA dead;
1 CC_WATCHDOG: the lack of an expected watchdog message from a “heard about” LNA

defines it as dead;
1 LL_ALIVE: not responded to after an item c) watchdog miss as described below.

Items b) and c) only apply to the transition from “heard about” to dead. They shall not be used
to define a connected (known) LNA as dead.

6.3.3.1 Connection loss

The connection shall be considered dead only if the urgent and/or the normal priority link
closes. The LNA may try to continue operation if only the low priority link dies. Congestion
shall not be considered a lost connection.

6.3.3.2 Watchdog trigger

Item c) shall, if the LNA was connected, be followed up with a reliable link check before the
LNA is defined as dead. The check shall be done by sending a liveness enquiry (LL_ALIVE)
and wait for one more watchdog interval to see if an answer or other traffic arrives (including
CC_WATCHDOG). In case of normal priority link congestion, the waiting time shall be doubled. If
the sending of the LL_ALIVE causes a link failure, the remote LNA shall immediately be
defined as dead.

6.3.4 The LNA watchdog function

The LNA is required to maintain a watchdog function to check that all connected LNAs are
alive. This function is based on periodic “is alive” broadcast messages from all LNAs. A failure
to receive a timely broadcast shall make the LNA check the communication link by sending a
reliable liveness request (LL_ALIVE). The watchdog broadcast shall also contain information
about topology in the system and, if space permits, information about local and undefined
MAUs. The message is called CC_WATCHDOG.

The message shall be sent with a minimum of 5 s intervals (WATCHDOG_INTERVAL). It should
normally not be sent more frequently, except as necessary to report undefined MAUs. The
message shall always contain the local LNA identity. Following that, it shall contain undefined
MAUs with a request frequency as defined in 6.2.3. If necessary, more than one message
may be sent at each watchdog interval, each containing one distinct set of undefined MAUs.
Note also that the longest retry interval is double the normal watchdog interval which allows
two consecutive messages at the normal watchdog interval to contain different sets of MAUs.
If there is space, the watchdog message may also contain a list of local MAUs. This list
should be created so as to ensure that all local MAUs are reported eventually.

The watchdog message shall be used to monitor the liveness of remote LNAs. A remote LNA
which has not sent a watchdog message within the specified interval shall be checked for
liveness by checking the reliable links to the LNA (LL_ALIVE).

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 47 –

6.4 Local MAU connection management

6.4.1 MAU identification

6.4.1.1 MAU name

MAUs shall be uniquely identifiable by their MAU name. An LNA shall deny services to a MAU
with the same name as another local MAU. If two remote MAUs have the same name, the
second arrival shall be discarded from the LNA’s database after a warning to the reporting
MAU (see 6.2.1).

6.4.1.2 MAUs on different logical networks

The LNA can in principle listen for MAU connections on different logical networks. Depending
upon protocol conformance class (see IEC 61162-400), the LNA may listen for local MAUs on
the following network types:

• local program loop-back (for LNA-MAU);

• local IPC (for MAUs located on the same host computer);

• non-redundant TCP/IP link (for MAUs located on LNA TP network or another network).

The LNA is required to handle all MAUs as if they were in the same namespace independently
of which network it connects to the LNA.

NOTE This list can be extended arbitrarily. The LNA is not required to accept incoming requests on any network,
but it should normally be designed to do so. This can be done, for example by using a data value pair (network id,
network node number) as local identification for a MAU. This means that the LNA should use the concept of TP
network and NNN also for MAU connections.

6.4.2 Local MAU states

The states of a local MAU (as seen from the LNA’s multiplexer/demultiplexer) are defined in
Figure 12.

LMAU_UNDEFINED

LMAU_ACTIVE

MAPI_OREQ

1

2

Local duplicate ?

MAU connects
Accept transport open

Close or kill control MCP
close and tidy (NewMau)

No
Positive MAPI_OACK
NewMau

Negative MAPI_OACK
Yes

Tidy (NewMau)
Link close

Figure 12 – MAU states seen from LNA

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 48 – 61162-401/FDIS IEC(E)

Local MAU management can be summarized in the following steps:

a) establish a listening port and wait for connecting MAUs. MAUs will actively try to connect
to an LNA when they start and an activated LNA is required to listen. The required
listening port addresses are dependent on the implementation of the MAU-LNA
communication link. For TCP/IP they are defined in IEC 61162-410;

1 when a MAU connects, the LNA shall establish a data link connection to the MAU using
relevant IPC or T-profile services (dependent on listening port, see previous item);

1 start MAU management using the protocol messages defined below. Deny sessions to
MAUs that have a name that is already defined locally. If the session is accepted, the
local MAU name database is updated (6.2 – NewMau). The LNA should not close the
connection to the MAU immediately after denying it a session. This may cause the
negative acknowledgement to be lost. To tidy up connection descriptors, the LNA can use
an internal timeout or rely on the MAU closing the connection from its side;

1 service MAUs in the active state. This consists of watchdog and status control functions,
various session management related services and general data transport services;

1 when the MAU management ends, tidy up network states related to the disconnected
MAU, for example terminate connections to the MAU’s data objects and any pending
transactions. The LNA must notify all interested LNAs and update MAU database about
the death of the MAU. This is done through a call to NewMau in the MAU database
function.

6.4.3 Starting MAU management

After a data link has been established, the following protocol messages are used to start a
MAU session:

– MAPI_OREQ. MAU requests a session;
– MAPI_OACK. LNA acknowledges or denies the request.

The open request message will contain the MAU name and session control information, for
example an optional watchdog interval.

The LNA is required to update the local MAU database with the new MAU immediately.

As a result of a successful session establishment, the LNA creates a special data object that
can be used to control the state of the MAU. This data object is described in 6.5. If a
watchdog interval is specified, the LNA is required to establish a watchdog service for the
MAU using the control data object.

6.4.4 Ending MAU management

The end of MAU management is signalled by one of the following events:

– the MAU closes its end of the communication link between MAU and LNA. This may be
due to a wilful action or to a communication error. The LNA is required to detect
communication link close;

– the MAU itself or a remote MAU executes a kill MAU command through the control MCP.
This function can be disabled for remote MAUs by supplying the MAU with a password
(6.5.2);

– the MAU itself removes the control MCP (6.5);
– the MAU fails to give a positive response to a watchdog query (6.5.3).

The end of a session is handled by the LNA by closing the connection to the MAU and tidying
up any state related to the communication link. The LNA shall output a message to the LNA-
MAU specifying the cause when a MAU session is terminated. Note that the dead MAU will
not get any message from the LNA specifying the reason for a close.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 49 –

The LNA shall do the database update required by the death of the MAU (6.2). This involves
also broadcasting information about the death of the MAU to all other LNAs and sending
directed messages to all connected LNAs.

The local LNA shall remove all states related to MCPs or transactions associated with the
dead MAU. The remote LNAs are responsible for doing the similar tidying up on their side
when they receive the session close message.

6.5 MAU control MCP

6.5.1 General overview

The LNA and MAU shall automatically create a (pseudo) MCP when the MAU open message
has been received and accepted by the LNA. This MCP is used to control and interrogate the
state of the MAU from the LNA by using normal function MCP messages (MAPI_FREQ and
MAPI_FACK). The MAU is required to answer requests to this MCP as described in this
clause. The MCP identity code for this object is a constant defined as OPEN_MCP_ID. This
MCP identity code is reserved and cannot be used by the MAU for other MCPs. The MAU
control MCP is a special MCP, i.e. it is not associated with an interface.

The accept MCP is used by the LNA as if the LNA was a connected MAU. The MCP cannot be
connected to by another MAU (except through the LNA MAU). Messages from the LNA to the
MAU control MCP shall use the session code zero (6.6).

6.5.2 Functionality

The data object is of the function type. The MAU will get a 32 bit unsigned integer function
code as input and shall return a 32 bit signed integer status code.

The set of defined input codes for the function is:

a) M_CLOSE: MAU is requested to close. The MAU should return non-zero if it does not
close;

b) M_RESET: MAU is requested to close and restart. The MAU should return non-zero if it
does not reset;

c) M_KILL: the LNA is ordered to close the connection to the MAU regardless of the return
value from the MAU. The LNA may do this immediately by closing the communication link.
The return value is ignored;

d) M_STATUS: the MAU is requested to return its status. This request is used by the LNA
when the MAU watch-dog function is enabled. The MAU must return zero if it is
functioning normally. A non-zero return value shall cause the LNA to close the MAU.

All these codes shall be converted by the MAU API to the corresponding event codes listed in
5.2.4. Note that the EV_LNA_RESTART is an internal code used by the MAU API to signal that
communication links are closed and that it is safe to retry connecting to the LNA. The return
code from the MAU session call-back routine shall normally be passed back to the LNA.

The LNA shall close the MAU communication link if the MAU returns affirmative to the close or
reset commands. This operation should normally not be necessary as the MAU should do the
closure itself.

6.5.3 Watchdog service

The LNA can be instructed by the MAU to maintain a watchdog service for the MAU. The
watchdog field in the MAPI_OREQ message is used for this.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 50 – 61162-401/FDIS IEC(E)

If enabled, this service shall function as follows:

a) at each watchdog interval, the LNA sends a status request message to the MAU control
MCP;

1 if no positive reply (i.e. no message or a non-zero return value) has been obtained since
the last request was sent, the MAU shall be forced closed.

Status request messages from LNA to MAU shall use a normal control data object function
request. This means that the MAU cannot distinguish LNA initiated requests from requests
from other MAUs, except by checking the session code message.

6.6 Session management

6.6.1 General principles

A session is an association between two MAUs that have established MCP connections
between them. The LNA shall maintain a list of sessions which can be identified by the MAU.
All sessions shall be uniquely identified both with respect to the identity of the participating
MAUs and with respect to temporal relationship, i.e. the termination of one session and a later
re-establishment of a connection between the same two MAUs shall result in a new session
code being used. Session code zero is reserved for the MAU-LNA session.

It is recommended that the session code is an integer running from one and upwards and
incremented at each new session establishment. As the session code is a 24 bit long integer,
this should give a sufficient degree of uniqueness. The MAU needs to reset its internal
session codes each time it establishes a new connection to its LNA.

All messages between two MAUs shall use the same session code. The session code is
maintained by the local LNA and need not be the same for local and remote LNAs.

6.6.2 MAU session information

The session code is part of any message from the LNA to the MAU. It shall normally be
extracted from the message by the MAPI and made available to the application through some
form of MAPI call, for example as an interface or MCP attribute (see Table 7 and Table 8).

In the session code, the LNA is responsible for informing the MAU about the following:

a) which session a given MAU-LNA message belongs to. This is given by the numeric value
of the session code;

b) the closing down of a session. This signals that a remote MAU has closed
(MAPI_SESSION);

c) congestion state on a communication link associated with a session. The states are no
congestion, congestion for low or congestion for normal priority messages
(MAPI_SESSION).

The session code (item a)) is embedded in the basic MAU-LNA message format (8.2). The
session close and the congestion information (items b) and c)) are transmitted with the
MAPI_SESSION message. The MAU API must convert the message to one of the appropriate
event codes (5.2.4).

6.6.3 Session codes used for authentication

The value of the session code can be used to verify that two messages on two different or on
the same MCP have the same source MAU. This is done by checking that the values of the
two session code fields are the same. By using various combinations of MCPs, this
mechanism can be used both for operator and console authentication. See the authentication
related companion standards in IEC 61162-420 for more information.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 51 –

The quality of the authentication mechanism will depend on the T-profile in use and on the
correct use of the companion standards.

6.7 Accept type interface management

6.7.1 General overview

The relationship between the entities associated with an accept interface is shown in Figure 13.

name
Interface

name
format

MCP
contains enables

Transaction

remote MAU
Session

connection belongs to

Figure 13 – Interface ER diagram

The server defined interface contains a number of MCPs. One or more client MAUs can
connect to the interface (all MCPs or a subset). The successful connection defines a session
(5.3) relationship between the client and server MAUs. The LNA for the client MAU shall
create a session object that is associated one to one with the client interface. Likewise, the
server LNA shall also create a new session object that is associated with the server interface.
However, the server interface can be connected to by several clients, so there may be more
than one session object to each server interface. Any transactions between the client and the
server shall automatically be tagged as belonging to the respective sessions.

The definition of an accept interface can be seen as a definition of a set of interface accept
MCPs. For connection management, it is necessary to look at the interface as one object, but
for transaction management it is necessary to be able to distinguish between the component
MCPs. These relationships should be sufficient for the LNA. The client LNA may also want to
keep track of which subset of an interface a client MAU has connected to. However, the client
MAU is responsible for keeping track of this.

6.7.2 Possible errors in interface definitions or connection requests

Interfaces can be defined through more than one message (from MAU or remote LNA). The
general principle is that no response shall be given to an interface definition or connect
request until the final message has been received (where the more flag is false). This applies
regardless of whether there are errors in the definitions or not. However, this principle creates
some error possibilities that are analyzed in the following subclauses.

6.7.2.1 Timeout between messages

The interface establishment times out before all messages are received. A special case is
where no end message is received and there is no timeout defined. This problem can, for
example be caused by a programming error that fails to send the end message.

This problem cannot be handled generally. If a timeout occurs, the timed out interface shall be
negatively acknowledged (LM_TIMEOUT) and the LNA shall accept any other messages as a
new interface definition attempt. An incomplete interface cannot be detected if no timeout is
defined. This interface shall not be acknowledged, but the LNA should delete it if the involved
MAU dies.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 52 – 61162-401/FDIS IEC(E)

6.7.2.2 Multiple definitions on the same interface

This can happen, for example if the application or an LNA sets the more flag to false for
multiple interface messages or if the application erroneously tries to define the interface in
several independent messages.

This shall be handled by giving negative acknowledgements on all but the first legal definition.
The negative acknowledge shall be given after all (more flag true) messages have been
processed.

6.7.2.3 Inconsistent interface specifications in different messages

The interface related attribute values in different messages may differ (e.g. interface name,
MAU name or password differ).

It is generally not possible to detect this error. The LNA must handle this case as if different
interfaces are referenced and handle each interface individually; either as in the previous
case (No final message) or as different legal interfaces. The exception is where only the
password differs. This case shall be handled by negatively acknowledging the interface
(LM_PASSWORD_FAIL).

6.7.2.4 Individual MCP errors

The MCP related attribute values in one or more messages may contain errors.

This shall be handled by waiting for the final message and returning a negative
acknowledgement (LM_INVALID_MCP) where the bad MCPs are flagged with the respective
error codes. Only the bad MCP codes are returned and only up to the number that fit in the
acknowledgement message.

6.7.2.5 Cancel on incomplete interface

A cancel message may be sent before the last interface definition message has been
received.

This shall cause the interface to be removed without acknowledgement to definer. Any
following definition messages shall be treated as a new definition.

6.7.3 Special handling of anonymous broadcast interfaces

The interfaces identified with the name “ABCn”, where ‘n’ is a number from ‘1’ to ‘5’, are
interfaces used exclusively for anonymous broadcast MCPs. The following special
arrangements apply to the processing of these interface connection requests:

a) several MCPs can in principle be defined in each interface – as is normal for interface
definitions. Only ABC MCPs can be defined;

b) no connection attempt shall be made. The MAU name shall be ignored for the interface
definition message;

c) accept type interfaces shall cause a listening port to be opened on the appropriate ABC
port. Connect type interfaces shall allow the transmission of messages on the same port;

NOTE A MAU that both listens and sends on the same MCP with the same port shall be able to read its own sent
messages.

d) no state shall be saved in conjunction with the reception or transmission of messages.

The detailed processing of ABC interfaces and messages are discussed in 8.4.5.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 53 –

6.7.4 Definition and removal of accept interface

The definition of an accept interface consists of defining a set of interface MCPs. The
following messages are used to define or remove an interface

– MAPI_IREQ: MAU requests the definition of a (part of a) new interface;
– MAPI_IACK: LNA accepts all MCPs in request;
– MAPI_IREM: MAU removes the whole interface.

The LNA gets the definition message from the MAU, containing all or some of the interface
components. The MAU may send more messages to define one interface, particularly in cases
where message sizes are small and interfaces large. If more than one message is used, this
shall be indicated with setting the more flag of the definition message to TRUE in all but the
last message. The interface definition shall not be acknowledged before all messages have
been received and processed.

NOTE The reason for the completeness requirement is to make the connection and reconnection procedure
easier. By requiring that an accept interface is complete before it is established, it is easier to handle incoming
client requests.

MAPI_IREQ
More?

IF_AWAIT

MAPI_IREM

Yes

MAPI_IREQ and no more
Check

MAPI_IREQ and more
Add

Add
No
Check

Ok
MAPI_IACK

IF_AOPEN

Not ok
MAPI_IACK(N)

LL_IFREM

Figure 14 – State transitions for accept interface

The state transition diagram for the accept interface is shown in Figure 14.

The LNA shall accept the complete interface or deny it. In case of a denial, all detected errors
shall be reported, also for individual MCPs.

If an interface is deleted by the server, a corresponding message (LL_IFREM) shall be sent to
all connected clients. One message shall be sent for each connected MAU. This message will
implicitly cancel all pending transactions.

6.7.5 Establishing and closing connections to accept interfaces

A client can establish a connection to a complete accept interface or to a part thereof. This
subclause describes the handling of these connections on the server LNA side. It is assumed
that the MAU identity has been established using the principles described in 6.2.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 54 – 61162-401/FDIS IEC(E)

The relevant messages are:

– LL_IFREQ: used by remote LNA to request MCP identifiers in interface;
– LL_IFACK: used by local LNA to report MCP identifiers to remote LNA;
– MAPI_IOPEN: sent to server MAU to request client authentication and to report connection

attempt;
– MAPI_IOACK: sent by server MAU to give or deny authentication/connection;
– MAPI_IDOWN: report remote close from client.

The state transition diagram is shown in Figure 15.

LL_IFREQ
Check message

IF_AUTHW

IF_COPEN

LL_IFREQ
Check message

LL_IFACK
OK

Not OK
Last IF request?

LL_IFREM
MAPI_IDOWN

OK

MAPI_IOPEN

IF_LIMITW

Connection limit?

Maybe
Wait for ack

MAPI_IOACK(N)

More
MAPI_IOPENLL_IFREQ

Check message

LL_IFREM
Accepted by server?

IF_LASTW

MAPI_IOACK
Save state, Last IF request?

Yes
All accepted?

LL_IFREQ
Last?

No
Wait for more

IF_REMW

LL_IFREM
Wait for auth

Not OK
LL_IFACK(N)

MAPI_IOACK

Yes
MAPI_IDOWN

No

Accepted by server?

Figure 15 – Accept side interface connection states

NOTE The processing of an accept interface connect can be simplified if tests on message validity and number of
connections are performed after all fragments of the connection message have been received. This will, however,
create more traffic on the network for unsuccessful connection attempts. Both methods of implementation may be
used and the client LNA must be able to handle both.

The remote LNA transfers an initial request with interface identity and relevant MCP attribute
values to the local LNA in an LL_IFREQ message. The local LNA checks the correctness of
the message and either immediately dismisses it if errors are detected or proceeds to check
any session limits. Note that acknowledgement shall not be sent before all interface definition
messages have been received (see 6.7.2).

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 55 –

If session limits are in force (the server has defined an upper limit of clients), this will be
checked against. There are four cases to consider: 1) if a limit is in force, a client MAU with
no previously established session shall be denied connection regardless of actual number of
sessions already established, 2) if a limit is in force and the limit has been reached, the
request shall immediately be dismissed; 3) if a limit is in force and there is already a pending
request that may reach the limit on connections, the new request shall be put in a waiting
state (IF_LIMITW) until the previous request was acknowledged. The result is either dismissal
or further processing; 4) This request will not exceed the limit and processing can proceed.

NOTE The first case will reduce load on a server MAU in cases where session limits are used and bad-behaving
MAUs try to connect to it. It will also help to remove the possibility that a bad-behaving MAU blocks another
authentic client from connecting.

The next step in the processing is to put the request in a waiting state (IF_AUTHW) while the
LNA interrogates the server MAU about the remote MAUs authorization. The authentication of
the remote MAU (and implicitly the interface connection message) is only sent once per
interface.

When the MAU session check returns, the requesting MAU is either accepted or denied a
connection. In the former case, the connection is maintained until the remote MAU dies or it
cancels all interface connections. Both cases are reported to the local MAU, either as a full
MAU death (6.6) or as an interface connect close.

The LNA must accept a connect cancellation in any of the states. This may be sent by the
remote MAU or by the remote LNA as a result of a timeout. Note, in particular, the handling of
cancellation in the authentication wait state.

Multiple interface connect requests may arrive from the remote MAU. The LNA must accept
these in any of the waiting state. These shall be checked for syntactic correctness and then
put on hold until all messages are received and all checks are complete.

All connection request messages belonging to one interface shall normally be treated as one
request with one final acknowledgement. Only one acknowledgement message is sent. In the
message, only erroneously MCPs are flagged if there are individual MCP errors. If too many
MCPs have errors to be fit in one message, only the first MCPs that fit are returned. This limit
will depend on the T-profile message size. All aspects of the interface request messages
(interface itself and all MCPs) must be correct for the interface to be accepted as a whole.
Note however that a client does not connect to the complete interface. The server MAU need
not remember which MCPs in an interface a client has connected to.

6.8 Connect type interface management

A client MAU can establish connections to all or to a subset of the MCPs in an interface. The
connection attempt can be performed by sending one or more messages. All messages are
processed as one request with one acknowledgement (possibly in more than one acknowl-
edge message). The interface will be associated with a session as described in Figure 13.

The relevant messages are:

– MAPI_IREQ: used by local MAU to request an interface connection;
– MAPI_IACK: acknowledge a connection attempt (negative or positive);
– MAPI_IREM: local MAU cancels connection;
– LL_IFREQ: used by remote LNA to request identifiers of data objects in interface;
– LL_IFACK: used by local LNA to define data object identifiers;
– LL_IFREM: LNA cancels connection.

The connection process is described in the state transition diagram in Figure 16.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 56 – 61162-401/FDIS IEC(E)

CIF_FIND_MAU

CIF_FIND_IF

CIF_OPEN

MAPI_IREQ
MauRequest

MAPI_IREM
LL_IFREM

LL_IFREQ

LL_IFREQ

MAPI_IACK

Yes

LL_IFACK

1

2

3
LL_IFACK(N)

MAPI_AACK(N)

Remote MAU close
MAPI_IACK(N)
Retry MauRequest

MauAck
Found?

MAPI_IACK(N)
LL_IFREM

Yes

Timeout

1

Try again?
Timeout

MAPI_IREQ
Save

MAPI_IREM
Timeout

MAPI_IACK(N)

Figure 16 – Connect interface state transitions

The first step is to determine the location of the remote MAU. This is described in 6.2. When
this process is complete, the connection request message is sent to the remote MAU’s LNA. If
the interface is reported as unknown, the request is repeated periodically until timeout. The
retry periods shall be increased as follows: The first attempt shall be immediately after the
remote MAU has been located. The next two attempts shall be with one second
(POLL_INTERVAL) space between. The next two attempts shall be with two period intervals
and thereafter the frequency shall be dropped to approximately five periods between each
attempt. The client LNA is responsible for checking the timeout. It shall send an interface
cancel (LL_IFREM) message to the server LNA in the case of a timeout as well as a negative
acknowledgement to the local MAU.

If the local MAU sends more than one interface request, all requests shall be queued in the
same waiting state. The interval timer shall be based on the first request’s timeout value.
Request timeout specifications following can be ignored. In any case, the client LNA must be
able to receive and buffer incoming multiple definition messages from the MAU in any state
(this is only drawn in the find MAU state).

NOTE It is suggested that the client LNA build a local interface descriptor structure as the messages from the
MAU arrive. The client LNA may buffer all MAU requests until the last one has been received (more flag being
false) before sending any messages to the server LNA. However, this increases connection duration as the
communication pipeline cannot be utilized (send message, authenticate at server MAU and answer message).

The server MAU will only be allowed to export complete interfaces. The only error messages
from the server LNA related to not finding an interface, is either that the complete interface is
missing, in which case the retry process shall be activated, or that individual MCPs have
errors or are missing. In the latter case, the client MAU shall immediately be notified of the
error and no further retries shall be attempted.

The server LNA accepts or rejects the connection attempt based on all requested MCPs
having been found. If the attempt was successful it will return a mapping from the local (client)
MCP identity to the server’s identity codes. If the attempt failed, it will return the error code for
the interface as well as individual error codes for those MCPs that did contain errors. The
client MAU does not need the mapping of the identity codes, but it needs the MCP error
codes.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 57 –

The client LNA shall inhibit multiple connections to the same interface or to MCPs within an
interface by returning error. The protocol will, in general, not allow the server to distinguish
between such multiple connections. This can lead to inconsistencies between client and
server LNA, particularly if some connections are removed.

6.9 General transaction management

6.9.1 MCP identity and transaction address

All transactions are associated with two MCPs which again are associated with two MAUs
(client and server respectively). All transactions must be addressed to the proper destination
(as request to server, as acknowledgement back to client), by using the following address
information:

a) destination LNA (implicit in the network node number used in T-profile);
1 destination MAU (MAU identity used on destination LNA);
1 destination MCP (MCP identity used on destination MAU).

This address information, together with the corresponding originator address information, is
part of the LL_DATA message. This message has a sender and a receiver field. These reflect
the sender and receiver of this particular data message, not which MAU is client and which is
server.

6.9.2 Transaction identity

All transactions are assigned an identity that is maintained all the way from the client MAU, to
the server MAU and back again. The server and the client MAU need not necessarily use the
same transaction identity if the LNAs in between take care of correct translation. The
requirement is that a message (cancel or acknowledgement) relating to some previous
request shall use the same identity code as was used in the original request at each of the
processing stages. Furthermore, the identity code shall, as far as possible, be different
between different transactions.

NOTE Typically the client and server MAUs will use different transaction identities. The LNAs can normally use
the client MAU’s identity code. The server MAU must translate back and forth between own and client’s code if
these are different.

The anonymous broadcast uses transaction code zero.

6.9.3 Session identity

The session identity code shall follow all messages between the LNA and the MAU. The
session code shall be the same for all messages originating from the same remote MAU. It
shall change each time the same remote MAU disconnects and connects. It shall not be the
same for two different remote MAUs.

The session code zero shall only be used for LNA originated messages (watchdog messages)
and for anonymous broadcast messages.

6.9.4 Transaction types

The following table lists all transaction types supported, with their respective request and
acknowledgement MAU-LNA messages.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 58 – 61162-401/FDIS IEC(E)

Table 13 – Data request/acknowledge message pairs

 Request type Ref. R/W Request Acknowledge Note

Function 6.10.1 R/W MAPI_FREQ MAPI_FACK

Read 6.10.1 R MAPI_RREQ MAPI_RACK

Write 6.10.1 W MAPI_WREQ MAPI_WACK

Non-acknowledged write 6.10.2 W MAPI_NREQ n/a

Initial ordinary subscribe 6.10.3 R MAPI_SREQ MAPI_FSACK 1

Initial broadcast subscribe 6.10.3 R MAPI_BREQ MAPI_FBACK 1

Initial individual subscribe 6.10.4 R/W MAPI_DREQ MAPI_FDACK 1

Ordinary subscribe data transmission 6.10.5 R n/a MAPI_SACK 2

Broadcast subscribe data transmission 6.10.5 R n/a MAPI_BACK 2

Individual subscribe 6.10.6 R n/a MAPI_DACK 3

Transaction cancel 6.10.8 n/a MAPI_CREQ MAPI_CACK 4

Anonymous broadcast subscribe 6.10.7 R MAPI_AREQ MAPI_AACK 5

NOTE 1 This is an initial transaction giving a direct response to the request. See notes 2 and 3.

NOTE 2 These are server initiated additional responses after the initial request. The same message
goes to all listeners.

NOTE 3 This is a server initiated response to individual clients. Each server message goes to one
client.

NOTE 4 The cancel messages are not data messages as such, but are included here for
completeness.

NOTE 5 The request goes only to the client LNA to initiate listening. The acknowledgements are sent
independently of any listeners.

6.9.5 Exception handling

6.9.5.1 General error handling

The LNA is required to check incoming messages for consistency (correct receiver identities
and reasonable sender identities). For incoming LNA messages the following rules apply:

a) any (typically LL_DATA or LL_DATAC) message to a MAU that cannot be found shall
cause the LNA to send a LL_NOMCP message to the LNA. The data message is discarded;

b) any message to an interface or MCP that is not defined shall cause the LNA to send a
LL_NOMCP message to the remote LNA. The data message is discarded;

c) an LL_DATA message with wrong transaction identity code shall be silently discarded. A
warning may be printed on a diagnostic console;

d) badly formatted data messages shall be returned to the remote LNA in a local LNA
generated MAPI_xACK message encapsulated in an LL_DATA message (no interface, no
MCP, etc.) with the proper error code set. The incoming message shall be discarded;

e) any other erroneous messages shall be silently discarded.

For incoming MAU messages, the following rule applies:

f) errors in the MAU’s request or the object’s connection state shall cause a negative
acknowledgement to be sent to the MAU with the proper error code set.

All errors should be reported on a diagnostic console and statistics shall be kept on the
number of bad messages received. If possible, the statistics should also list the offending
MAU or LNA.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 59 –

Excessive errors may be handled by shutting the offending unit down by closing the
communication link.

6.9.5.2 MAU or interface down

Transaction exception handling is mainly associated with the death of a remote (client or
server) MAU or the closing down of a remote (accept or connect) interface.

Broken connection management consists of removing all pending transactions when the
remote receiver or originator disappears. This applies to the server as well as the client side.
It is not necessary to notify the local MAU of each transaction cancellation. It is sufficient to
signal the close of the interface (MAPI_IDOWN) or the remote MAU (MAPI_SESSION).

6.9.5.3 Congestion and load control for transactions

The server MAU can specify a maximum number of pending transactions for an interface. This
mechanism can be used to control MAU load. When enforcing this limit, the LNA shall not
count transactions in the PENDING_SUBS state. Only transactions in the PENDING_ACK
state shall be counted (see Figure 17).

Congestion control is done through the session control messages. This is an end to end
mechanism. The LNA should take note of these messages, but, as far as possible, leave the
enforcement to the sender MAUs. This means that the LNA should have enough buffer space
to handle incoming messages, even on a congested link.

6.10 Accept side transaction management

The state transition diagram for transactions on an accept type MCP is shown in Figure 17.
The diagram’s events are labelled with the relevant message types, with the MAPI messages
going to and from the local MAU and the LL messages going to and from the remote LNA.

The states are:

a) wait in interface queue: this state is used if the server MAU has defined a maximum
number of unacknowledged transactions (only interface MCPs and only requests that are
not urgent). If there is a maximum limit being enforced, the message is waiting for a
previous message being acknowledged by the MAU (MAPI_xACK);
NOTE 1 This state is not being used for congestion control. Although the sender (remote LNA or local LNA
toward local MAU) should stop messages on a congested link, the local MAU must be able to receive and
buffer a number of transactions that may have been sent before a congestion message was received by the
remote MAU.

NOTE 2 The number of pending transactions used to do congestion control shall not include broadcast
requests that have already received its first acknowledgement.

b) pending acknowledge: this state is used for requests that have been sent to the server
MAU, but have not yet been acknowledged;

c) pending subscribe: this state is used for requests that trigger multiple server initiated
acknowledges (subscriptions, except anonymous broadcast subscribe). The transactions
in this state are used to route later arriving server initiated acknowledgements.

Server MAU generated acknowledgement messages (on an ordinary or broadcast subscribe
MCP) can legally be generated although there is no transaction object. For this particular
transaction, the local MAU does not know how many, if any, subscribers there are. These
messages shall be silently discarded.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 60 – 61162-401/FDIS IEC(E)

LL_DATA
Interface busy?

No
MAPI_xREQ, save ID

MAPI_xACK
Initial subscribe ?

Yes
LL_DATA, save ID

LL_DATAC
MAPI_CREQ

No
LL_DATA, del ID

Yes
MAPI_xREQ

PENDING_ACK
2

PENDING_SUBS
3

MAPI_xACK
LL_DATA

QUEUE_WAIT
1

No
Non-ack write ?

Yes
Wait for free queue

(MAPI_xACK)
Non-ack write ?

Figure 17 – State transitions for accept type data object transactions

One transaction object must be created for each incoming transaction, i.e. several
transactions can be active simultaneously on the same MCP.

Transactions are only legal for MCPs in interfaces in the defined state. The interface’s
transition from defined to undefined shall terminate all pending transactions (see 6.8).

Unexpected messages in any states shall be discarded with a negative acknowledge on
requests where possible. In particular, the LNA must expect to receive acknowledges from the
server MAU after a subscribe has been cancelled by the client.

Client MAUs, through their LNAs, can request transactions on an accept type data object they
are connected to. The relevant messages are:

– LL_DATA: incoming and outgoing data messages between LNAs;
– LLBC_SACK: incoming and outgoing broadcast data messages;
– LL_DATAC: issued by client LNA to signal request or subscription termination;
– MAPI_xREQ: used from LNA to MAU for transaction requests;
– MAPI_xACK: used from MAU to LNA for transaction acknowledgements.

The requests can take several forms. Table 13 lists the available request (and corresponding
acknowledgement) types.

In general, accept transaction processing for the LNA represents passing a request from a
remote LNA to the local MAU and receiving the acknowledgement from the local MAU and
sending it back to the remote LNA. Incoming requests and outgoing acknowledges are
encapsulated in the LL_DATA message before they are transmitted between LNAs.

The LL_DATA message is an encapsulation of the MAU-LNA messages listed in Table 17.
The receiving LNA needs to change MCP identity codes before it passes it to its LNA. Note
that the broadcast data message is sent in an LLBC_SACK or LLBC_AACK message instead of
in the normal data message.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 61 –

The different types of requests must be handled somewhat differently and the LNA needs to
check the type of the request to determine what kind of processing is required. The following
subclauses describe the individual processing in detail. Table 13 gives a reference to the
subclause in which each type of transaction is described. Note that it is necessary to check
the type of transaction as well as the type of the MCP. Subscribe and write transaction
message codes do not distinguish between different sub-types of data objects.

6.10.1 Read, write and function transaction handling

The following actions need to be taken by the server LNA when a normal (read, write or
function) request is received from a client LNA:

a) check message for consistency (consistent receiver identities and reasonable sender
identities). Discard message and return an error message to LNA if transaction request is
unacceptable;

b) save client’s identity (MAU, MCP and transaction identity codes) from incoming message.
This information needs to be copied to the outgoing acknowledgement message;

c) strip LL_DATA header from message and modify MCP identity code in remaining
MAPI_xREQ message. Add session information before it is sent to the destination MAU.
The MCP identity code shall be that of server MAU’s MCP;

d) continue other operations until LNA receives the corresponding MAPI_xACK message
from the server MAU. Check this message for consistency, for example check identity and
transaction codes and check that server initiated subscriptions are associated with an
open MCP. Replace identity codes (MAU, MCP and transaction) in this message with
those of the client MAU. Add the LL_DATA header with the correct identity information
fields. Send message to remote LNA.

NOTE Removal of client MAU or MCP or the cancellation of the request may have caused the client’s information
to have been deleted before step d) is activated. In this case, the LNA shall silently discard the acknowledgement.
A warning may be printed on the diagnostic console.

6.10.2 Non-acknowledged write request

The non-acknowledged write shall be handled as a normal write request with the following
exceptions:

a) no change;
b) this step is not necessary since no acknowledgement is sent;
c) no change;
d) this step is not necessary since no acknowledgement is sent.

NOTE The LNA must make sure that erroneous returning acknowledgements from the server MAU (step d)) are
discarded and that an error message is printed on the diagnostic console.

6.10.3 Initial subscribe

The initial subscribe request shall be handled as a normal read operation with the following
exceptions:

a) no change;
b) no change;
c) no change;
d) no change, except that the client’s identity must be stored until the transaction is explicitly

cancelled. The identity information in the request shall be used by the LNA to build a list
of subscribing client MAUs. All following server MAU initiated acknowledgements shall be
sent to all subscribers on this list. The LNA shall not enter a client’s identity into the list if
the MAU reports a non-null status in the acknowledgement message (subscribe error).

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 62 – 61162-401/FDIS IEC(E)

There is no difference in how normal initial subscribe and broadcast subscribe requests are
handled.

6.10.4 Initial individual subscribe

The initial individual subscribe request shall be handled as a normal function operation with
the following exceptions:

a) no change;
b) no change;
c) no change;
d) no change, except that the client’s transaction identity must be stored until cancelled (see

previous subclause). The identity shall be used by the LNA to direct server generated
acknowledgements to their correct destination.

6.10.5 Server initiated subscribe acknowledgement

The server MAU for a subscribe type data object will send unsolicited subscribe
acknowledgements at any time after the object has been established. The server’s LNA shall
pass these acknowledgements on to the subscribing clients (6.10.3). For ordinary subscrip-
tions (not broadcast), the operation corresponds to step d) in the normal read operation
except that:

– one copy of the acknowledgement message is sent to each subscribing MAU;
– the list of pending transactions remains intact after the messages have been sent;
– the transaction identity used in the outgoing acknowledgement is the one defined in the

initial subscribe request for the respective receiving MAUs. The identity code following the
acknowledgement has no meaning for the LNA.

For broadcast subscription messages, only one message is sent to all receivers. Destination
identity codes and transaction identities are not used. The acknowledgements are sent on the
appropriate broadcast port, embedded in a LLBC_SACK message. Ordinary subscribe messages
are sent to the client MAU’s LNA with an ordinary LL_DATA message.

6.10.6 Server initiated individual subscribe acknowledgement

The server MAU for an individual subscribe type data object will send unsolicited subscribe
acknowledgements to any selected subscriber. The server LNA needs to keep track of all
pending transaction to pass the acknowledgements on to the correct subscribing client. This
operation corresponds to step d) in the normal function operation except that:

– the list of pending transactions remains intact after the messages have been sent.

6.10.7 Anonymous broadcast subscribe

There is no client transaction state associated with anonymous broadcast messages. The
message shall be sent out on the appropriate broadcast port embedded in an LLBC_AACK
message after the message has been checked for consistency (open MCP and correct
identifiers). The message must be formatted with the correct MCP identifier attributes prior to
sending (hashed name – see 8.4.5). Transaction and session codes shall be set to zero.

6.10.8 Cancellation of a transaction

A client MAU can at any time cancel a transaction. The cancellation request is processed by
the client LNA and results in a LL_DATAC message being sent to the server LNA. The
reception of this message shall cause the server LNA to remove the client’s transaction
record from the MCP. No acknowledgement is sent to the client MAU or LNA.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 63 –

LL_DATAC messages can be received by the server LNA without a corresponding transaction
record being found (e.g. if the transaction already was acknowledged by the MAU). These
messages may be silently discarded by the server LNA.

6.11 Connect side transaction management

The client LNA needs to maintain state relating to transactions which are similar to those for
the accept side transactions. The state transition diagram is shown in Figure 18. The
transaction object is created when a transaction request is received from the MAU and
deleted when the transaction is cancelled or completed. Messages from other LNAs relating
to non-existing transaction objects shall be discarded. These messages typically occur due to
race conditions in transaction cancellations or timeouts and shall be treated as normal
situations.

PENDING_ACK

PENDING_SUBSCRIBE

1

2

MAPI_xREQ

LL_DATA

MAPI_CREQ
MAPI_CACK
LL_DATAC

Ordinary
LL_DATA

MAPI_FSACK
Yes

Initial subscribe ack ?
LL_DATA

Timeout
MAPI_xACK(N)
LL_DATAC

No
MAPI_xACK

Non-ack write

Type request?

MAPI_SACK

LL_DATA
LLBC_SACK

ABC subscribe
Wait

Figure 18 – State transitions for connect type transactions

The LNA’s task can be described as follows:

a) the transaction request is received from the MAU as a MAPI_xREQ message. See Table 13
for the definition of the various types. Before the request can be processed, the data
object connection state must be checked to see that it is ready for communication;

b) the message must be modified so that the MCP identity code is changed from the client’s
code to that of the server (see the MAPI_xREQ format);

c) the message must be checked for the definition of a timeout (see item f) and, if a timeout
is defined, a timer must be started;

d) the request shall be embedded in an LL_DATA message (except for anonymous broadcast
requests) and sent to the remote LNA;

e) different pending acknowledgement or idle states are entered depending upon the
message type as shown in the figure. State (typically in the form of a transaction object)
need only be saved when acknowledgements are expected;

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 64 – 61162-401/FDIS IEC(E)

f) a triggered timeout for the request (see item b)) shall delete the transaction object. A
timeout negative acknowledge (in a MAPI_xACK message) shall be sent to the MAU and a
data cancel LL_DATAC to the remote LNA;

g) a cancellation message (MAPI_CREQ) can sometimes be received in the idle transaction
state. In this case, a negative acknowledgement shall immediately be returned. Otherwise,
the cancel shall delete the transaction object and a cancellation acknowledge
(MAPI_CACK) shall be sent to the MAU. An LL_DATAC shall be sent to the remote LNA;

h) the acknowledgement from the remote MAU (in a LL_DATA message from the LNA) shall
be checked with regard to the MCP codes and the transaction serial number. A data
acknowledge relating to a cancelled or timed out request (in the idle state), shall be
ignored;

i) the MAPI_xACK message shall be extracted and the server MAU’s MCP identity code
exchanged with the local MAU’s MCP identity code (see item b). The message shall be
passed on to the MAU and the transaction state shall be changed as shown in the figure.

NOTE The client LNA need not modify the MAU message embedded in the LL_DATA message. Necessary identity
code changes shall be made by the server LNA.

The anonymous broadcast subscribe request shall cause the MCP to enter the subscription
data wait state without any message being sent.

An LL_DATA message containing MAPI_SACK (ordinary subscribe – not first subscribe) in the
pending acknowledge state shall be silently discarded. This can be expected to happen for
a broadcast subscribe MCP, since the two message types use different communication
channels.

6.12 LNA-MAU

Diagnostics will be done by a dedicated MAU associated with each LNA. This MAU can report
configuration and other management related information to some central management MAU.
The LNA MAU caters to the logical network (functionality-oriented – number of MAUs, number
of MCPs, MAU level traffic patterns, etc.).

It shall be possible to report the following diagnostics:

– the identity and version code for the LNA;
– the reason for closing down a local MAU or a link to a remote LNA;
– any communication errors on links to MAUs or LNAs;
– discarded and unexpected messages.

It shall also be possible to provide the following functions on local MAUs:

– send status, close, reset or kill commands to the MAU.

Performing these operations shall be dependent on the client MAU having been authorized to
do the operation, for example through the authentication companion standard IEC 61162-420
or a general password or originator check mechanism.

The detailed specification of the LNA MAU will be provided by IEC 61162-420.

6.13 Use of priority levels in LNA

All LNA-LNA and LNA-MAU management messages, i.e. all messages except those that carry
application data, shall use the normal priority communication link. Data-carrying messages
shall use the priority level of the message itself. The message priority is specified by the
client MAU at connection establishment and the server LNA shall update the messages to and
from MAUs so that this priority is encoded in priority field of the MAU part of the message.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 65 –

Note that for normal subscribes, where the LNA duplicates messages from the server MAU to
all subscribing clients, the LNA may need to use different priorities for different destinations.

6.14 Congestion control

The T-profile will normally have mechanisms for signalling congestion on one or more links
between LNAs or between LNA and MAU. Congestion shall be reported to afflicted MAUs by
the LNAs. Congestion shall normally only afflict normal or low priority communication links. A
congestion on an urgent link shall be handled as gracefully as possible, but is in principle a
system design error.

The handling of congestion is designed so that the MAU normally should not see congestion
as cancellation of messages (except as a result of a timeout). This also applies to
acknowledgements, which will also be delivered unless the timeout triggers. The handling is
also designed to minimize traffic by sending one congestion message between LNAs instead
of a number of cancelled messages.

Congestion control is only used for interfaces. For MAUs that only support full MCPs, the only
possible method for congestion control is to close down the MAU that causes congestion.

Congestion warnings to MAUs are warnings and do not in themselves require any particular
action. However, ignored congestion warnings can cause some messages to be cancelled or
the link to be closed.

6.14.1 Congestion cases

Congestion can occur in the following cases:

a) a MAU is not able to process incoming messages fast enough. The local LNA shall have a
certain buffer capacity, but at some point the LNA will have to signal congestion to
sending entities. This is achieved by sending a congestion message (LL_SESSION) to the
connected LNAs. When the congestion stops, a congestion cancel is sent to the same
entities with the same message;

b) a MAU is producing outgoing messages too fast for the local LNA to keep up. It will be
necessary for the MAU to handle this locally, possibly by giving congestion messages
back to itself. The LNA can also send a MAPI_SESSION message (on session zero) to the
MAU which should have the same effect;

c) a remote LNA is not able to process incoming messages fast enough. The local LNA must
generate the MAPI_SESSION message to local MAUs that communicate via this LNA;

d) a MAU determines that it cannot process any more messages from one particular remote
MAU. It can then issue a congestion control message on the relevant session.

6.14.2 LNA requirements

The LNA is required to have a low and high water mark on its buffers (internal or those that
are maintained by the T-profile) so that there is reasonable hysteresis in the congestion
control mechanism.

The LNA shall not in general return messages unprocessed (with LL_SESSION flag set) in
cases where congestion occurs. It shall use the congestion control mechanisms instead. This
applies even when messages arrive after the congestion message has been sent. The high
water mark in buffers (spare capacity) should be able to accommodate this.

The LNA that receives a congestion control message can either pass the message to the
MAU (MAPI_SESSION) or use it to buffer outgoing messages. The LNA should in no case
cancel messages due to congestion.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 66 – 61162-401/FDIS IEC(E)

Normal message timeout shall be applied even in cases of congestion. Message cancellation
should normally be sent to congested LNAs so that buffer space can be freed.

6.14.3 MAU requirements

If a congestion control message has been received, the MAU shall not send more messages
of the congested type (low and/or normal priority) until a congestion cancel message has
arrived – this is not enforced by the LNA.

7 Protocol defined as sequence diagrams

This clause defines the A-profile protocol as a set of sequence diagrams. Clause 8 defines
the message formats and other details regarding functionality.

7.1 General conventions

7.1.1 Broken connections

All modules shall be designed to handle broken connection at any time in the communication
sequences. All state relating to afflicted data objects shall be removed and proper negative
acknowledges shall be sent to any requesting modules still alive. The default action is to
assume the far side of the broken connection dead and take appropriate actions at local side.

NOTE For communication between LNAs, there is normally more than one link. A broken connection must
consider the state of all links as described in 6.3.3.1.

For the various modules this means:

a) MAU-LNA: when the MAU-LNA link breaks the MAU shall regard all system knowledge
and state relating to itself as lost. It should restart from the point of connecting to the LNA
and try to establish a new connection as rapidly as possible;

b) LNA-MAU: when a local MAU disappears all states relating to that MAU shall be removed
from the LNA. The MAU shall be deleted from the MAU database. The remote LNAs with
connections to the removed MAU shall be notified (see 6.2);

c) LNA-LNA: when a remote LNA disappears all states relating to that LNA and its MAUs
shall be removed. Local MAUs with connections to any of the removed MAUs shall be
notified (see 6.3).

7.1.2 Exception handling

Most sequence diagrams are based on complete request/acknowledge message passing
sequences. Various exceptions are not normally drawn into the diagram. Sometimes the
exceptions are described in other diagrams, but in general, the designer needs to consider
the following exceptions:

a) a cancellation of the original request. This is normally described in other diagrams, but
these diagrams must be merged with the normal request/acknowledge diagrams and
compared to the state transition diagrams described in the previous main clauses;

b) closing down of remote units (LNA, MAU, interface or MCP) at any time in the sequence.
This may or may not be covered by the diagrams, but the general handling should be the
same as for not being able to find the module in question;

c) closing down of the requesting unit. This can be handled as a cancellation, except that the
dead unit needs no acknowledgement. Note also that the general MAU and LNA
management systems will report deaths of this kind in any case. The designer needs to
consider the handling of cancellations and death messages in a consistent manner.

Timeouts are normally included in the diagrams.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 67 –

7.2 LNA management

7.2.1 Opening LNA-LNA connection

The LNAs when opening a connection between them use a handshake protocol to exchange
information about each other. This protocol is implemented by the T-profile. The T-profile will
report the remote network node number and other network related information once a
connection has been successfully established.

7.2.2 LNA watchdog functionality

The LNA is required to send regular watchdog messages and to listen for other LNA’s
watchdog messages. A missing message shall be investigated by sending a link liveness
request (6.3.4).

MAU
CC_WATCHDOG

RMAURLNALNA

CC_WATCHDOG
1

1 < WATCHDOG_INTERVAL

2
LL_ALIVE

LL_ALIVE

3

2 > WATCHDOG_INTERVAL × 1,2
3 < WATCHDOG_INTERVAL × 2

Figure 19 – LNA watchdog

The LNA shall send the watchdog message at least each WATCHDOG_INTERVAL. A missing
message after 20 % over the expected time shall result in the issue of an LL_ALIVE request
from other LNAs. This must be replied to by an LL_ALIVE, but the remote LNA shall also
accept a CC_WATCHDOG as sign of liveness. If the remote LNA does not get an answer after
twice the watchdog interval from the last sign of life, the LNA shall be defined as dead.

NOTE This procedure is only used by LNAs that maintain connections between them. The procedure replaces the
link level liveness check in the previous issue of the standard.

7.2.3 Congestion control

Congestion control is done by the sending MAU when it is being notified of a too high
message rate. Different congestion control messages can be sent as indicated by the
comments to figure 20:

(1) from a MAU to another MAU. This results in exactly one message on each of the links
shown in the diagram;

(2) from a MAU to its LNA. This shall result in the LNA sending individual session control
messages to all LNAs that have MAUs connected to the afflicted MAU;

(3) from an LNA to another LNA. This shall cause the receiving LNA to send congestion
control messages to all local MAUs that communicate with MAUs on the congested LNA;

(4) The receiving LNA shall duplicate all received messages to the involved MAUs.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 68 – 61162-401/FDIS IEC(E)

The diagram below shows the transmission of congestion control messages.

MAU

LL_SESSION

RMAURLNALNA

1

2MAPI_SESSION

LL_SESSION

MAPI_SESSION

MAPI_SESSION

MAPI_SESSION

4

2

3

Figure 20 – Congestion messages

The MAU getting a congestion message shall stop (or start) sending messages of the
specified priority to the afflicted MAU (or LNA). Continuing to send data on a congested link
may cause link failure or individual message cancellations. The LNA is not expected to react
to congestion control messages.

7.3 Opening and closing MAU sessions

7.3.1 MAU to MAU communication via same LNA

This standard requires that a MAU shall be handled in the same manner whether it
communicates with itself, another MAU on the local LNA or a MAU on a remote LNA. For local
communication only adherence to the sequence and format of messages between MAU and
LNA is the requirement. In this case, the rest of the sequence diagrams can be regarded as
informal information only.

NOTE Note, in particular, the LNA-MAU that is residing in the same program space as the LNA. See also 4.2.

The designer shall take special precautions with regard to broadcast communication where
some T-profiles may be unable to repeat back to the sender the sent message, even if the
sender was listening in on the destination port.

NOTE The LNA designer is free to decide how to handle LNA internal message flow when two MAUs both
connected to the local LNA communicate. For practical reasons, it will usually be convenient to create some kind of
loop-back communication channel inside the LNA. This means that the information in the sequence diagrams can
be applied in full, regardless of MAU topology.

7.3.2 Opening a MAU session

The opening of a MAU is initiated from the MAU itself after the physical connection has been
established. Figure 21 shows the message sequence. The MAU requests a session opening
through the MAPI_OREQ message and gets the acknowledgement (or denial) through the
MAPI_OACK message. The LNA registers the MAU in the MAU database and broadcasts
information about it through CC_DEFMAU.

MAU
MAPI_OREQ

MAPI_OACK

RMAURLNALNA

CC_METOO

CC_DEFMAU

13
2

MAPI_FREQ
4

Figure 21 – MAU session open

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 69 –

The following comments to the sequence diagram apply:

(1) the LNA shall deny the MAU session (negative acknowledge in the MAPI_OACK message)
if an equally named MAU already is registered at the local LNA. In this case, sequence 1
is omitted;

(2) if any remote LNA has a non-local duplicate of a newly advertised MAU, the old MAU
reference shall be deleted and replaced by the new MAU reference;

(3) a CC_DEFMAU message received by a remote LNA which already has registered a local
MAU with the same name shall cause the remote LNA to send a CC_METOO message, but
retain the local MAU in its database;

(4) the LNA shall periodically interrogate the state of the MAU, if instructed to do so, through
a watchdog field in the open message. The watchdog function is performed on the MAU
control data object (see below).

The successful opening of a MAU session causes a control data object to be defined for the
MAU. This data object is used to interrogate the MAU of its status and also to close the MAU
down if desired. The data object is also used by the MAU watchdog function implemented by
the LNA. The data object is referenced by the object code OPEN_MCP_ID. See 7.3.3 and 8.2.2
for more details. The definition of a new MAU will enable the establishment of connect
interfaces (7.4.3).

7.3.3 Closing a MAU session

The closing of a MAU session can be caused by different events. In all cases, the physical
connection either has been closed as one of the direct effects of the event or when the LNA
immediately closes the connection when the event is detected.

The different session close cases are:

a) the MAU explicitly closes the connection at its side to signal a session end. This is the
normal way to signal a MAU side session close;

b) the connection closes because of a communication error detected on the LNA side, for
example a garbled message or a transport layer error. This shall, if possible, be reported
on a diagnostic console or to the LNA MAU;

c) the LNA closes the connection because it received a M_KILL command or because the
MAU did not positively acknowledge the LNA’s M_STATUS request on the OPEN_MCP_ID
(see 6.5 for details);

d) the MAU’s session establishment timer times out (see 7.3.2).

MAU

LL_MAUACK(N)

RMAURLNALNA

CC_DEADMAU

1

Close event

MAPI_SESSION
1

LL_DATA(C)
LL_NOMCP

2

1 Only active connections

Figure 22 – Closing a MAU connection

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 70 – 61162-401/FDIS IEC(E)

In all cases, the LNA immediately closes the physical connection and notifies the rest of the
system of the disappearance of the MAU. LNAs with connections to interfaces on the removed
MAU (comment (1)) shall be directly notified through the use of LL_MAUACK messages (see
7.3.5 for handling of this message on the client side). The rest of the system is notified
through broadcasts from the LNA (CC_DEADMAU).

Any remote MAU that has a connection to the removed MAU (comment (1)) shall be notified
about the death by its local LNA through a session-down message. The LNA shall then
automatically try to re-establish the connection. This process is described in 7.4.

If the remote LNA sends data (LL_DATA) or cancellation (LL_DATAC) messages after the
removal of a MAU (the MAU is not known locally) an LL_NOMCP message shall be sent to the
offending LNA (comment (2)). This is normally caused by the data message already being in
the pipeline when the local MAU dies. However, it may also indicate a logical error in the MAU
or the LNA.

7.3.4 Finding a remote MAU in LNA

The LNA shall maintain a list of local and remote MAUs that are known to it (6.2). It shall also
provide a MAU connection service. To facilitate this service, the LNA uses a mix of broadcast
general name look-up and directed point to point connection establishment requests.

CC_REQMAU

CC_REQMAU

LL_MAUREQ

LL_MAUACK

CC_DEFMAU

MAU RMAURLNALNA

1

4

1

MauRequest

CC_WATCHDOG

MauAck

2

LL_MAUACK(N)

SessionClose

RMAU dead

3

Figure 23 – MAU look up and close

The LNA’s MAU look up module will get requests for MAUs as described in 6.2. It is required
to determine the location of the MAU. This is done as indicated in the above figure and in the
referenced clause. The following comments apply:

(1) unknown MAUs shall be looked for by increasing intervals, either through one-by-one
name requests or through the general LNA watchdog mechanism;

(2) the location of a MAU reported through broadcasts shall be verified by a reliable link
exchange;

(3) if the verification fails, the attempt shall be retried by sending new broadcasts;
(4) if there is already a connection to the MAU, the session establishment steps shall be

dropped. There can also be a timeout associated with the request that can cause a
negative acknowledgement to be delivered at this point.

The module shall also notify the caller of a close in the MAU connection (session close). It is
the responsibility of the caller to request a new look-up for the MAU after a close.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 71 –

NOTE The labels MauRequest, MauAck and SessionClose are services provided by the LNA itself and are not
messages.

An LNA to LNA connection may have to be established before the first contact between the
local and the remote LNA (see 7.1.2).

The client LNA is required to try to restore any interface connection that goes down due to a
server failure. The connection attempt will start as soon as the client MAU has been notified
of the exception. All timeouts and other parameters originally defined by the client MAU will
be used in the new connection attempt. The client MAU can cancel the attempt by issuing a
close interface command.

The following subclause, 7.3.5, defines the actions to be taken in the face of a set of expected
connection down events. Following the specified link down actions, the LNA shall try to
reconnect missing connections from the MAU search initiation.

7.3.5 Server MAU or LNA dies

The connection between the server LNA and the server MAU may go down. In this case, the
server LNA reports the death of the MAU to all LNAs that are known to maintain connections
to the dead MAU (see comment (1) below). Only one message need be sent to each LNA.

MAU

LL_MAUACK(N)

RMAURLNALNA

1

2
MAPI_SESSION

Dead MAU

Figure 24 – Server MAU dies

The LNA reports the loss of connection to all MAUs that have interfaces associated with the
dead MAU (MAPI_SESSION). Then the LNA starts the attempt to reopen all connections. The
re-opening is equivalent to the normal open procedure except that the initial MAU request
message is unnecessary.

See also previous subclause on the handling of the remote MAU information in the LNA.

The following comments apply:

(1) one message for each remote connected LNA, independent of MAUs served by LNA.
Alternatively, this message may be substituted with a close of the LNA-RLNA link;

(2) one message for each MAU, independent of the number of interfaces.

The LNAs (and MAU) shall clean up all states related to the lost MAU, for example
connections and pending transactions.

7.4 Opening and closing interfaces

7.4.1 Opening accept interface

The opening of an accept IF causes the server defined attributes for all the MCPs in the
interface to be registered in the local LNA. The sequence diagram is shown in Figure 25.

MAU
MAPI_IREQ

MAPI_IACK

RMAURLNALNA

MAPI_IREQ
1

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 72 – 61162-401/FDIS IEC(E)

Figure 25 – Accept IF open

Any number of definition messages may be sent by the MAU before the final request message
(signalled with false in the more field) is sent. The LNA shall only acknowledge after the final
message has been sent (comment (1)). The LNA may deny the request (negative acknowl-
edge) if errors are detected in the message.

7.4.2 Closing accept IF

The semantics of the interface requires that the server MAU and LNA keep track of client
connections. This requires notification when an accept interface goes down. The sequence
diagram is shown in Figure 26.

MAPI_IREM

LL_IFREM

MAPI_IDOWN

MAU RMAURLNALNA

2

1

Figure 26 – Closing accept interface

The following comments apply:

(1) all client MAUs shall be notified, i.e. more than one message to each connected LNA may
be necessary;

(2) the remote LNA shall inform the client MAUs about the interface close and cancel all
pending transactions without further notification.

All pending transactions shall be cancelled without notice, also locally.

7.4.3 Opening connect IF

The open connect IF sequence is shown in Figure 27.

MAU

MAPI_IREQ

RMAURLNALNA

LL_IFREQ

MAPI_IOPEN

MAPI_IOACK

LL_IFACK

MAPI_IACK

LL_IFREQ

MAPI_IREQ

1

4

3

3

3

2

2

5

5

Figure 27 – Connect IF open

The following comments apply:

(1) after the first connection request, the LNA must first locate the RMAU. This is achieved
by using the principles discussed in 7.3.4. This operation may or may not require
communication;

(2) the MAU may issue more than one request (see the state transition diagrams in 6.7.5 and
6.8). The client LNA can buffer requests, although it is recommended that messages be
immediately forwarded. Dependent on message size limitations, the LNA may also have to
fragment each MAU request into several LNA-LNA requests;

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 73 –

(3) the LNA and the RLNA shall not give an acknowledgement before all requests have been
received (the more flag is false). If the request times out on the client side, the client LNA
will cancel the request;

(4) the RLNA may have to delay the authentication request to the RMAU if there is a
connection limit in force and the limit has been reached by still pending requests.
Normally, the authentication request to the RMAU will be sent immediately after receiving
the first request from the LNA. The client authentication and connection announcement
between RLNA and RMAU is done only once per interface and connection;

(5) more than one acknowledgement message may be needed if message lengths are small.
The last message is signalled with the more flag being false.

The RLNA need not store state on the actual MCPs the client has connected to within an
interface. This information is maintained by the LNA, based on MCP identity information from
RLNA. Another state is maintained only on an interface and transaction basis.

The LNAs shall insert a session code identifying the MAU-MAU session in all messages to its
MAUs. This session code is also used in data messages.

7.4.4 Closing connect interface

A client initiated close removes all connections to MCPs in the interface. All pending
transactions are cancelled implicitly and without notification. Later data acknowledges can be
silently discarded.

MAU
MAPI_IREM

RMAURLNALNA

LL_IFREM

MAPI_IDOWN

LL_DATA(C)

LL_NOMCP

1

Figure 28 – Interface close

If the RLNA sends further data messages (LL_DATA or LL_DATAC), these shall be answered
by LL_NOMCP. This typically means that a data message crossed the MAPI_IREM message
somewhere in the communication pipeline (comment (1)).

7.5 Data transfer messages

The data transfer messages move data-requests from one MAU to another and transports the
acknowledgement in the other direction. These messages are normally sent on virtual
connections between one connect and a corresponding accept MCP. The exception from this
is the broadcast messages.

The basic message sequence is described in 7.5.1. It applies to bi-directional data transfers
where the client explicitly initiates each transaction. The client can initiate a new request on a
MCP before the next is acknowledged. Each transaction must be looked at as a separate
object with a unique identity.

Other data transfer types are unidirectional. This applies to subscribe and non-acknowledged
write. Broadcast subscribe is a special case of the subscribe where network bandwidth is
saved by using broadcasts for data transfers. The trade-off is a certain chance that messages
may be lost.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 74 – 61162-401/FDIS IEC(E)

7.5.1 Data transfer of read, write or function type

MCPs that support read, write or function, basically support the same transaction mechanism.
This is a full bi-directional client-initiated transfer. The difference between read, write and
function is that the read only carries data from the server, the write only carries data to the
server and the function carries data both ways. The message sequences are the same in all
three cases. The sequence diagram is shown in Figure 29.

MAU RMAURLNALNA
MAPI_xREQ

LL_DATA

MAPI_xREQ

LL_DATA

MAPI_xACK

MAPI_xACK 3

2

1

1

4

2

Figure 29 – Normal data transfer sequence

The sequence is initiated by the client MAU and propagated forward to the remote MAU and
back again through the system. Several transactions can be active at any one time. Each
transaction is handled individually.

The following comments apply:

(1) each message is equipped with a transaction identity. This identity shall be restored by all
parties when the corresponding acknowledgement is sent back, for example the local LNA
must save the client MAU’s transaction identity and restore it when the acknowledgement
is sent back to the client. This identity code is also used for cancellations and multiple
acknowledgements (subscriptions). The transaction identity is not useful for non-acknowl-
edged transactions;

(2) the LNAs shall insert a session code in all messages to the MAU that identifies the MAU-
MAU session in force. The same session code shall be used in the interface connection
establishment. The message may be queued in the LNA if the MAU is congested or if
there is a limit on the number of pending transactions the MAU accepts;

(3) the remote MAU need not acknowledge the requests in any particular sequence and it may
delay acknowledgements indefinitely;

(4) for non-acknowledged write transactions, the LNA and RLNA need not keep track of the
transactions and the RMAU shall not acknowledge the request. The session information
shall be inserted in the message to the RMAU.

The various message types are listed in Table 14.

Table 14 – Transaction message types

Generic Read Write Non-ack write Function

MAPI_xREQ MAPI_RREQ MAPI_WREQ MAPI_NREQ MAPI_FREQ

MAPI_xACK MAPI_RACK MAPI_WACK MAPI_FACK

Between the LNAs, the LL_DATA message shall be used for all transaction types.

A timeout may be associated with any request. This timeout shall be enforced by the client
LNA and shall, if triggered, result in a negative acknowledgement message to the client MAU
and a cancellation message to the RLNA and RMAU (see 7.5.3). Any errors during processing
of a request shall result in a negative acknowledgement to the originator LNA and/or MAU.
The negative acknowledgement shall be encapsulated in the proper message type, but the
data field shall be empty.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 75 –

7.5.2 Subscribe data transfers

Subscribe data transfers differ from the basic type in that several acknowledgements may
result from one request. This is typically done by returning one initial acknowledgement as a
direct response to the initial request and then generating later acknowledgements at the
server MAU’s discretion. There are four different types of subscriptions:

a) ordinary subscribe: the initial acknowledgement is sent directly and only to the requesting
client. Later, the RMAU at self-controlled events, generates one acknowledgement
message, referenced to its accept MCP that is duplicated by the RLNA to all subscribing
clients. The duplication shall copy the client’s transaction code into the message;

b) individual subscribe: this is similar to ordinary subscribe, except that the RLNA does not
duplicate later acknowledgements. The RMAU generates individual later acknowledge-
ments to each client;

c) broadcast subscribe: as ordinary subscribe, but the later acknowledgement is sent as one
message on the broadcast channel ABC0 to all listening clients. The LNA must copy the
correct transaction code into the message;

d) anonymous broadcast. There is no remote MAU in this mechanism. The sender sends to a
global broadcast address (ABC0 to ABC5) and receivers listen to the same.

The sequence diagram is shown below.

MAU
MAPI_xREQ

LL_DATA

MAPI_xREQ

RMAURLNALNA

MAPI_FxACK

LL_DATA

LLBC_xACK

3

5

1

6

2

4

MAPI_xACK

MAPI_xACK

MAPI_FxACK

Figure 30 – Subscribe data transfer

The first sequence (group (2)) describes the initial request. The second sequence (group (5))
describes the later acknowledgements.

NOTE This standard does not prohibit the transmission of more than one initial request. This shall in principle
register one pending transaction at the RLNA for each request and thus, cause multiple later acknowledgements.
This has no use for ordinary and broadcast subscriptions, but may be useful for individual subscriptions.

The message codes shall depend on the type of subscription as defined in the following table.

Table 15 – Subscription messages

Type Init. MAU req. Init. MAU ack. Later MAU ack. LNA-LNA

Ordinary MAPI_SREQ MAPI_FSACK MAPI_SACK LL_DATA

Broadcast MAPI_BREQ MAPI_FBACK MAPI_BACK LLBC_SACK

Individual MAPI_DREQ MAPI_FDACK MAPI_DACK LL_DATA

Anonymous MAPI_AREQ n/a MAPI_AACK LLBC_AACK

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 76 – 61162-401/FDIS IEC(E)

The following comments apply:

(1) for anonymous broadcast requests, the message is only sent to the local LNA. The rest of
the sequence is void. The local LNA will establish a listening port and will transfer
messages received (comment (5))) to the listening client;

(2) otherwise, the first transaction is functionally equivalent to a normal client initiated read
(ordinary and broadcast subscribe) or a function transaction (individual subscribe). See
7.5.1;

(3) the server MAU can delay the first acknowledgement or send acknowledgements in any
order as for normal transactions;

(4) the server LNA needs to keep the transaction as pending although a first acknowl-
edgement is sent to the client. The first acknowledgement is delivered only to the
requesting client;

(5) the RMAU initiates all later transactions. It does this by sending MAPI_xACK messages to
the RLNA. The time at which these messages are sent are determined solely by the server
MAU. The LNA embeds the message into the correct LNA-LNA message (see Table 15);

(6) the LNA shall keep track of all active subscribing MAUs and send one message to each
remote MAU (for ordinary subscribe), one broadcast message (for broadcast subscribe) or
only one message to the MAU the transaction belongs to (individual subscribe).

The client MAU can stop delivery of subscription acknowledges by cancelling the subscription
(see 7.5.3). This still lets the connection stay open. The client must close its MCP to remove
the connection.

A timeout may be associated with the initial request. This timeout shall be enforced by the
client LNA and shall, if triggered, result in a negative acknowledgement message to the client
MAU and a cancellation message to the RLNA and RMAU (see 7.5.3). Any errors during
processing of an initial request shall result in a negative acknowledgement to the originator
LNA and/or MAU. The negative acknowledgement shall be encapsulated in the proper
message type, but the data field shall be empty. Errors during processing of later
acknowledgements can also result in a negative acknowledgement on the first request if
appropriate. A negative acknowledgement shall, in any case, stop later acknowledgements.

7.5.3 Data transfer cancel and transfer timeout

The cancel mechanism can be used on any type of data transfer. It is used to stop the
server’s acknowledgement of a request. Figure 31 shows the sequence diagram for the
general cancel operation. The MAPI_xREQ and MAPI_xACK messages can be any of the legal
request or acknowledgement messages as defined in Table 14 or Table 15.

Cancel is initiated by the client MAU with the MAPI_CREQ message. The client’s LNA sends
the cancellation further on in the chain, while it blocks any acknowledgements that arrive from
the server.

The following comments apply:

(1) a cancel must be referred to a previous request. The transaction identity code must follow
the cancellation. Any request can be cancelled, although it will have no effect on non-
acknowledged writes;

(2) a transaction timeout can be specified by the client MAU and shall be enforced by the
LNA. If the timeout triggers, it shall have the same effect as if a cancel was issued by the
MAU. However, instead of the cancel acknowledgement normally delivered when the
cancel is complete, the timeout shall cause an immediate negative acknowledgement on
the initial request to the MAU;

(3) if the cancellation is applied to an anonymous broadcast, no further action is necessary
than cancelling the listening port. The cancel acknowledge shall be sent to the MAU;

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 77 –

(4) if the transaction acknowledgement was already received and passed on by the LNA (this
is recognized as if there is no transaction object corresponding to the cancellation
request), the MAU shall get a negative cancel acknowledgement. No further action is
necessary. This corresponds to sequence (4) and voids sequence (5);
NOTE The API in the MAU must determine how to handle this case. It is usually most convenient to ignore
the negative cancel acknowledgement.

(5) if the LNA did not already receive the transaction acknowledgement, it shall send the
cancel request on to the remote LNA and return a positive cancellation acknowledge to the
MAU. The transaction object shall be removed and later data acknowledgements
discarded. This will result in sequence (5) and some parts of sequence (4) (dependent on
the server’s acknowledgement being intercepted or not);
NOTE A negative acknowledgement on a subscription request represents the termination of the initial
request. In this case, the referenced object should be deleted and a cancellation shall be negatively
acknowledged. The subscription transaction object shall survive the initial acknowledgement.

(6) if the remote LNA already has got the acknowledgement, it can ignore the cancel.
Otherwise, it passes the cancel request on to the remote MAU. Note that subscription
transaction objects shall normally survive the initial acknowledgement;

(7) any transaction acknowledgement sent from the remote MAU shall be intercepted and
stopped as early as possible. Unless it was already passed to the MAU by the local LNA
(comment (4)) it shall not be delivered.

Successful subscribe transactions (except anonymous broadcast) will always have a
transaction identity to cancel. Note that any later acknowledgement shall be cancelled as well.

MAU
MAPI_xREQ

LL_DATA

MAPI_xREQ

RMAURLNALNA

MAPI_CREQ

MAPI_CACK

LL_DATAC

MAPI_xACK

LL_DATA

MAPI_CACK(N)

1

MAPI_CREQ

MAPI_xACK

3

2

5

4

6

7

8

MAPI_CREQ 2

MAPI_xACK(N)

5

4

Figure 31 – Cancelling a data transfer

A cancel message cancelling side effects of the transaction cannot be relied upon, even if the
cancel was delivered to the remote MAU. This is determined by the application.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 78 – 61162-401/FDIS IEC(E)

8 Message definitions

8.1 Introduction

This clause describes the format of all message types used by this standard. Subclauses 8.2,
8.3 and 8.4 each describe a single communication path. The first is the MAU – LNA path. This
is followed by a description of the LNA – LNA reliable message path, and finally the LNA –
LNA unreliable multi-cast path.

8.1.1 Common message format

All messages, regardless of transportation path, share a common format as described in the
table below. The purpose of using this format is to make it easier to reuse components in the
transport layer interface (TLI) and the T-profile, and to provide possibilities for a more general
handling of messages in the various software components (LNA and MAPI).

The message format is also defined so that the T-profile can use the header to do message
fragmentation and assembly over, for example a stream-oriented protocol (see IEC 61162-410).

Table 16 – Common message format

Octet # Data type Field description

0 – 1 word16_m Magic code (MV4_MAGIC)

2 – 3 word16_m Message type

4 – 5 word16_m Priority

6 – 7 word16_m Message length (= 8 or x+1)

8 – x Data

The magic code is used to identify messages from a special version of the standard or to
distinguish between messages of a special class. For the purposes of the A-profile, only one
code is used: MV4_MAGIC. Messages arriving on a link and having non-recognized magic
numbers should cause the link to be closed.

The message type is an identifier for the application layer. It is dependent on meaning and
context of the message.

The priority defines the priority of the message. The priority is also sometimes determined by
the transport path that the message follows. The following priority codes are allowed by this
standard:

a) PT_LOW: low priority (normally used only for stream communication);

b) PT_NORMAL: normal message priority;

c) PT_URGENT: urgent message priority.

The T-profile shall enforce a best-effort priority handling on the network. The MAU and the
LNA are required to process higher priority messages before lower priority messages.
Between messages on the same priority level, the units shall enforce round robin (first in first
out) handling.

The message length contains information for the T-profile and the application layer. It defines
the overall length of the message, including the header.

The rest of the message, if any, is application data.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 79 –

8.2 MAU-LNA messages

8.2.1 Message format

All messages between MAU and LNA have the same basic format given in Table 17. The
message starts with a magic number, a message type identifier and the message length.
Other fields are described in the following subclauses.

Table 17 – Basic MAU – LNA message format

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m Message type

4 – 5 word16_m Priority

6 – 7 word16_m Message length (= 20 or x+1)

8 – 9 mcid_m MCP ID

10 – 11 word16_m Session code

12 – 15 word32_m Transaction identity

16 – 19 word32_m status or timeout

20 – x Data

8.2.1.1 MCP ID field.

All LNA-MAU messages shall be referenced to one of the MAU’s MCPs by using the MCP’s
corresponding identity code in this field. This identity code is defined by the MAU during
interface connection establishment. General MAU related messages use the special code
OPEN_MCP_ID (value zero) in this field.

Note that the LNA must map incoming MCP identity codes (from a remote MAU) to the identity
code used by the local MAU when remote LNA-LNA messages are processed.

8.2.1.2 Session code

The session code is used to identify the MAU-MAU session to which the message belongs.
The session code is defined by the LNA. The special session code zero is used for LNA-MAU
session related messages. The session code is not used in messages from MAU to LNA,
except for the MAPI_SESSION message.

8.2.1.3 Transaction identity

The transaction identity shall be defined by the MAU for all outgoing requests. This identity
code will be used by the LNA to mark the returning acknowledgement messages. Likewise,
the MAU shall use the transaction identity of the incoming request when it is acknowledged.

The LNA is also required to make sure that outgoing transaction codes match those of the
incoming requests. This means that the LNA must store the incoming codes, as a minimum to
check consistency between incoming and outgoing messages.

8.2.1.4 Status or timeout field

The last field before the (optional) message body, status or timeout, will have different
meaning depending on the type and direction of the message.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 80 – 61162-401/FDIS IEC(E)

a) Request messages from MAU to LNA will have a timeout field. A timeout value of zero
means forever, i.e. no timeout. A non-zero timeout value specified in milliseconds shall be
read and processed by the local LNA. The LNA shall either complete the request within
the specified timeout or return a negative acknowledge with the status code set to
LM_TIMEOUT.

b) The status or timeout field shall be ignored for request messages going from LNA to
MAU.

c) Acknowledge messages in either direction using the field for status codes (e.g. when
LNA indicates a timeout – see item a). The status code is used to signal the success or
failure of a request.

8.2.1.5 Status codes

The status code LM_OK (value zero) is used to signal a normal acknowledgement. Any other
code specifies some kind of error. All legal codes are defined in annex B. For compatibility
with future versions of the standard, all implementations shall accept unknown error codes
and handle them as unspecified errors.

The MAU shall receive at most one acknowledge message for each request (except for
subscriptions). In the case of an LNA internal error report or a timeout, the LNA shall filter out
any other message that is an effect of the original request being processed at a remote site.
This is, in particular, appropriate for transaction requests.

A message with a non-zero status field will normally have an empty data field.

8.2.2 MAU session control

8.2.2.1 Request MAU session open (MAPI_OREQ)

This message is sent from the MAU to the LNA to make the MAU known to the LNA. If the
session can be successfully opened, the LNA shall perform the following actions:

a) allocate an LNA-unique number as identifier for the MAU (mauid_m). The LNA shall try to
avoid reusing old serial numbers since this may cause confusion in other parts of the
system;

b) create an implicit accept type MCP for the MAU. This MCP shall have the ID code
OPEN_MCP_ID;

c) register the MAU in the system. This means registering the new MAU in the name look-up
database.

The message shall be answered with a MAPI_OACK message from the LNA.

Table 18 – MAU session open request message

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m MAPI_OREQ

4 – 5 word16_m Priority

6 – 7 word16_m Length = x +1

8 – 9 mcid_m OPEN_MCP_ID

10 – 11 word16_m Session (not used)

12 – 15 word32_m Transaction identity

16 – 19 word32_m Timeout (watchdog interval in ms)

20 – 21 word16_m Protocol version, major number

22 – 23 word16_m Protocol version, minor number

24 – 25 word16_m Conformance class

26 – x mauname_m MAU name

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 81 –

The watchdog interval instructs the LNA to periodically interrogate the MAU of its status. If
non-zero, the watchdog interval is specified in milliseconds. A zero in this field disables the
watchdog function.

Following that are two small integers giving the version code of the protocol, major version
number first (most significant) and minor version number second. The version numbers for
this edition of the standard are defined in 3.1.24.

The conformance class is defined in the companion standard IEC 61162-420. It defines the
class of application implemented by the MAU (see INTERPRETATION PFClass). The
following codes are reserved by this part of the standard:

a) PFC_NONE (zero): no particular application class;

b) PFC_LNA (one): the MAU associated with the LNA (LNA MAU);

c) PFC_SIMPLE (two): MAU has rudimentary version control fields;

d) PFC_FULL (three): MAU has configuration management capabilities.

Other conformance codes may be defined by the companion standard IEC 61162-420.

The MAU name is a null terminated string. If the MAU name starts with underscore, it shall be
converted to a system unique MAU name by the LNA.

8.2.2.2 Acknowledge MAU session open (MAPI_OACK)

The LNA shall reply to the MAPI_OREQ message with the message shown in Table 19.

The acknowledge message’s status field specifies the result of the open request. The format
of the returned packet will depend on the value of this field. The following codes are used:

a) LM_OK means that the session is open and that the MAU is registered;
b) LM_DUPLICATE_MAU means that the session was denied because another MAU on this

LNA had the same name;
c) LM_FORMAT_FAIL means that some data fields in the open request were formatted

incorrectly;
d) LM_NOT_SUPPORTED means that the protocol version specified is not supported by this

LNA.

Table 19 – MAU open acknowledge message

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m MAPI_OACK

4 – 5 word16_m Priority

6 – 7 word16_m Length = x+1

8 – 9 mcid_m OPEN_MCP_ID

10 – 11 word16_m Session (zero)

12 – 15 word32_m Transaction (as in the request)

16 – 19 word32_m status: error code | LM_OK

20 – 23 [2]word16_m LNA protocol version code (major, minor)

24 – 25 [2]word16_m LNA software version code (major minor)

26 – x address_m Network address of LNA

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 82 – 61162-401/FDIS IEC(E)

8.2.2.3 Closing the MAU session

Closing of the MAU session is done by simply closing the physical connection between the
MAU and the LNA. It can also be done by sending a “session zero down” in the session
control message (see next subclause).

8.2.2.4 Session control (MAPI_SESSION)

This message is sent or received by a MAU to indicate changes in a session. It is normally
used to mark a session as congested or not congested. A MAU can also send it to request the
close of its own session. The LNA will then close the MAU down.

Table 20 – Session control

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m MAPI_SESSION

4 – 5 word16_m Priority

6 – 7 word16_m Length = 20

8 – 9 mcid_m OPEN_MCP_ID (not used)

10 – 11 word16_m Session

12 – 15 word32_m Transaction identity (not used)

16 – 19 word32_m Status contains session control message

The session code is the one reported through the connection registration. Session code zero
applies to the LNA-MAU session.

The session control message is one of those described in 5.2.4. The SESSION_DOWN code
shall be ignored when it is sent from a MAU, except when it is used on session zero.

8.2.3 Interface definition messages

8.2.3.1 Request interface open (MAPI_IREQ)

This message is used by the MAU to define an interface. If the interface is specified as accept
type, the LNA will add accept type data objects to the system. If the interface is specified as
connect type, the LNA will try to connect this interface to the corresponding interface in the
system.

Several interface definition messages may be issued by both client and server for the
definition of one interface. For both accept and connect interfaces, all MCPs must be
accepted for the interface to be activated.

Table 21 – Request interface open

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m MAPI_IREQ

4 – 5 word16_m Priority

6 – 7 word16_m Length = x + 1

8 – 9 mcid_m Interface identity

10 – 11 word16_m Session (not used)

12 – 15 word32_m Transaction code (not used)

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 83 –

Octet # Data type Field description

16 – 19 word32_m Timeout (ms)

20 – 23 int32_m IF type (M_CONNECT or M_ACCEPT)

24 – 25 word16_m Maximum pending transactions (used only for accept)

26 – 27 word16_m Maximum number of clients (used only for accept)

28 – 28 bool_m More flag (true if more MCPs follow later)

29 – mauname_m MAU name (null terminated, may be null for accept)

- ifname_m IF name (null terminated)

- password_m IF password (null terminated, may be null for accept)

- word16_m Number of MCPs in this message

- mcid_m ID of new MCP Information

- mcpname_m MCP name (null terminated) repeats for

- x format_m Format string (null terminated) each MCP.

The interface identity code is in another scope than that of the MCP identity codes so the
same numeric values can be used for MCP and IF codes.

The maximum pending transactions and maximum clients are used on the server side to
control MAU load. The limits are enforced by the LNA. The value zero in these fields means
no limit to be enforced.

If a non-zero connection limit is specified, the server LNA shall deny the connection attempt
immediately, if the requesting MAU has not already established a session with the server
MAU.

NOTE This should be used together with the authentication companion standard IEC 61162-420 to avoid that non-
authenticated client MAUs block a service interface.

The interface identity, the load limit parameters, the interface and MAU names must be the
same in all messages if more are needed to define a complete interface. The more flag shall
be zero in all messages except the last, if more messages are used to define one interface.
The server MAU shall either use its own name or null in the MAU name field.

The server MAU should leave the password field empty. The connection request message will
contain the password the client specified. The LNA will not check passwords.

The MCP identity must be unique on a MAU. The MCP name and format string are discussed
in clause 9. The MCP specific information is repeated for every MCP in the message.

Note that anonymous broadcasts can use any MAU name. The interface name is used to
distinguish between the available broadcast ports. Only ABC MCPs can be defined in an
interface associated with an ABC port.

8.2.3.2 Acknowledge interface open (MAPI_IACK)

This message is used to report the result of the LNA’s attempt to define MCPs in an interface.
The status code is LM_OK for a successful attempt or one of the following error codes:

a) LM_TIMEOUT: the request timed out, opening aborted;

b) LM_FORMAT_FAIL: the format of the request was wrong (bad interface parameters);

c) LM_INVALID_MCP: the request contained a useless MCP identity code;

d) LM_IF_EXISTS: the interface already exists;

e) LM_PASSWORD_FAIL: the remote interface was found, but the passwords did not match;

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 84 – 61162-401/FDIS IEC(E)

f) LM_AUTHEN_FAIL: authentication failed at server MAU;

g) LM_CLIENTS: too many clients.

Table 22 – Interface open acknowledge

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m MAPI_IACK

4 – 5 word16_m Priority

6 – 7 word16_m Length = x + 1

8 – 9 mcid_m Identity of IF (as defined by request)

10 – 11 word16_m Session (for connect)

12 – 15 word32_m Transaction identity (not used)

16 – 19 word32_m General status

20 – 21 word16_m Number of bad MCPs

22 – mcid_m MCP identity Repeat for

- x word32_m Status all bad MCPs

The LNA sends one acknowledgement for all MCPs in the interface, if the attempt succeeded.
The status code will be LM_OK in that case and the MCPs field will be zero. If an error
occurred, the general error code will be put into the status field and MCP specific errors (if
appropriate) will follow for the MCPs that are flagged as bad. It is up to the LNAs to put as
much information as appropriate into this message. The list of bad MCPs need not be
complete, for example if the message length limits the number. It is only meant as a
diagnostic help to the system integrator.

The interface identity code is the code used in the request.

The session code is used at the client side to identify the remote MAU session. Later
connections or transactions belonging to the same session will use the same session code.

8.2.3.3 Interface connection request to server (MAPI_IOPEN)

This message is sent to the server to indicate that a client attempts to connect to the server’s
interface. Only one message is sent regardless of the number of connection request
messages the client sends. The MAU is not notified of the MCPs to which the client has
connected. The message shall be responded to by a MAPI_IOACK message.

Table 23 – Interface connect request to server

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m MAPI_IOPEN

4 – 5 word16_m Priority

6 – 7 word16_m Length = x + 1

8 – 9 mcid_m Identity of IF (as defined by interface definition request)

10 – 11 word16_m Session code

12 – 15 word32_m Transaction identity (not used)

16 – 19 word32_m Status/timeout (not used)

20 – mauname_m Remote MAU name (null terminated)

- x password_m Remote MAU’s request password (null terminated)

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 85 –

The identity field shall be the one the server MAU defined for this interface. The session field
identifies the remote MAU session and will be used in all transactions belonging to this
session. The remote MAU name and password is as specified in the connection attempt by
the client.

8.2.3.4 Interface connect acknowledge from server (MAPI_IOACK)

This message is sent by the server to reply to a client’s connection attempt. The status field
gives the status of the request:

a) LM_OK: authentication given;

b) LM_PASSWORD_FAIL: passwords did not match;

c) LM_AUTHEN_FAIL: authentication failed for other reasons.

Table 24 – Interface connect acknowledge from server

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m MAPI_IOACK

4 – 5 word16_m Priority

6 – 7 word16_m Length = 20

8 – 9 mcid_m Identity of IF (as defined by interface definition request)

10 – 11 word16_m Session code (as in request)

12 – 15 word32_m Transaction identity (not used)

16 – 19 word32_m Status of request

The identity field shall be that the server MAU defined for this interface. The session field is
the same as in the request.

8.2.3.5 Interface remove (MAPI_IREM)

This message is used by a server or client to remove a complete interface (connection).

Table 25 – Interface remove

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m MAPI_IREM

4 – 5 word16_m Priority

6 – 7 word16_m Length = 20

8 – 9 mcid_m Identity of IF (as defined by interface definition request)

10 – 11 word16_m Session (not used)

12 – 15 word32_m Transaction identity (not used)

16 – 19 word32_m Timeout (not used)

8.2.3.6 Interface connection down (MAPI_IDOWN)

This message is sent to a server MAU when one client disconnects from an interface. Note
that the general session down message (8.2.2.4) can have the same effect as this message.
No interface down messages are sent if a remote session is terminated.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 86 – 61162-401/FDIS IEC(E)

Table 26 – Interface connection down

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m MAPI_IDOWN

4 – 5 word16_m Priority

6 – 7 word16_m Length = 20

8 – 9 mcid_m Identity of IF (as defined by interface definition request)

10 – 11 word16_m Session

12 – 15 word32_m Transaction identity (not used)

16 – 19 word32_m Timeout (not used)

The session code is the one reported through the connection registration.

The server MAU must cancel any pending transaction requests belonging to this session on
this interface when this message is received. It may also delete a client MAU’s authentication
for accessing other interfaces.

8.2.4 Data transfer messages

8.2.4.1 Transaction request messages (MAPI_xREQ)

The client MAU can request data from a server MAU by using the message format described
in Table 27. The same message is also used to send data to servers. The LNA passes this
message encapsulated in a LL_DATA message to the remote LNA. The reply, if any, will be
delivered to the sending MAU as a MAPI_xACK message. The x represents a letter code
corresponding to the data object type as listed in Table 13.

Table 27 – Transaction request message

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m type: MAPI_xREQ

4 – 5 word16_m Priority

6 – 7 word16_m Length = 20 or x+1

8 – 9 mcid_m ident, ID of MCP

10 – 11 word16_m Session (only for server)

12 – 15 word32_m Transaction code (to be returned in acknowledgement)

16 – 19 word32_m Timeout (client MAU only)

20 – x word8_m[] Data

The same request message will be used on the client and the server side. The message will
have the same contents except for the ident field, which may change value when it is passed
through the LNAs.

The client’s LNA shall change the client MAU’s MCP ID to the MCP ID of the server MAU.

The session code shall be set by the server’s LNA to the code used in interface connection
establishment (where applicable).

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 87 –

The transaction code is set by one sending entity and this entity requires that the same code
shall be returned in the corresponding acknowledgement (where applicable). It is the receiver’s
responsibility (LNA or MAU) to make sure that the return transaction code is correct.

The timeout is used by the client MAU and is enforced by the local LNA. No other entity shall
use the timeout code.

The request message can contain data when it is marked with a ‘W’ in the Read/Write column
of.Table 13. It is, however, legal to have an empty data field even for a write type message.
The data representation mechanisms are described in 3.4.

8.2.4.2 Transaction acknowledge messages (MAPI_xACK)

The transaction request message will normally be acknowledged by the server MAU (except
for non-acknowledged write transfers and ordinary subscriptions that are copied by the
remote LNA). The format of this message is shown in Table 28. The acknowledge can also be
generated by one of the intermediate LNAs if an error occurs during the transfer. A positive
acknowledge will contain the status code LM_OK. Any other code signals an error:

a) LM_INVALID_MCP: the local LNA could not find the specified MCP;
b) LM_TIMEOUT: the local LNA has detected that the request has timed out according to the

given value in the request;
c) LM_NO_SUCH_MCP: the remote LNA can not find the specified remote MCP;
d) LM_FORMAT_FAIL: the remote LNA detects non-conformity between request type and

format of the MCP;
e) LM_CONGESTION: message dropped due to congestion;

f) LM_LIMIT: message dropped due to a transaction number limit;

g) LM_AUTHEN_FAIL: MAU denied service due to authentication problems.

Table 28 – Transaction acknowledge message

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m type: MAPI_xACK

4 – 5 word16_m Priority

6 – 7 word16_m Length = 20 or x+1

8 – 9 mcid_m ident, ID of MCP

10 – 11 word16_m Session (used by client)

12 – 15 word32_m Transaction code (as in request)

16 – 19 word32_m status: LM_OK or error

20 – x word8_m[] User defined data (only if LM_OK)

The same acknowledge message will be used on the client and the server side. The message
will have the same contents except for the ident field and possibly the transaction code fields,
which may change value when it is passed through the LNAs. The server’s LNA shall change
the server MAU’s MCP ID to the MCP ID of the client MAU. The transaction code shall be
changed by all entities to the code of the corresponding request.

The acknowledge message can contain data when it is marked with an ‘R’ in the Read/Write
column of Table 13. It is, however, legal to have an empty data field even for a read type
message. The data representation mechanisms are described in 3.4.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 88 – 61162-401/FDIS IEC(E)

The LNA shall check that an acknowledgement from another LNA (encapsulated in a
LL_DATA message) corresponds to a local pending request.

8.2.4.3 Special considerations for subscribe type acknowledge.

The server LNA maintains the list of remote MCPs that are subscribing to a given server
MAU’s subscribe type data object. The following notes apply (see Table 15):

a) a MAPI_FxACK type acknowledge shall only be sent to the requesting MCP;
b) a MAPI_SACK acknowledge shall be sent to all subscribing MCPs;

c) a MAPI_BACK or MAPI_AACK acknowledge shall be sent once via multi-cast;

d) a MAPI_DACK shall be sent only to the MAU identified by the transaction code;

e) the receipt of an LL_NOMCP message relating to a subscribing MCP shall, if possible,
remove the appropriate transaction object from the list of subscribers. The same applies
to the LL_DATAC and all session or interface close messages;

f) the server MAU may issue MAPI_SACK messages even though no MCPs are subscribing.
These messages shall be discarded by the LNA.

8.2.4.4 Transaction cancel request (MAPI_CREQ)

The MAU can cancel an outstanding transaction request by using the cancel request
message. The message format is described in Table 29. It shall be acknowledged by a
MAPI_CACK message.

Table 29 – Transaction cancel request message

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m MAPI_CREQ

4 – 5 word16_m Priority

6 – 7 word16_m Length = 20

8 – 9 mcid_m ID of MCP

10 – 11 word16_m Session (only for server)

12 – 15 word32_m Transaction code

16 – 19 word32_m Timeout (ignored)

The session code shall be set for the server MAU. The transaction code is that used in the
corresponding request message (possibly exchanged by LNAs).

8.2.4.5 Transaction cancel acknowledge (MAPI_CACK).

The MAU’s cancel request message shall always be acknowledged with a cancel
acknowledge message. The message format is shown in Table 30. The status code is LM_OK
if the LNA was able to detect a pending data message. Other status codes that may be
returned are:

a) LM_NOTHING_TO_CANCEL: no acknowledgement pending for this transaction;

b) LM_INVALID_MCP: the MCP was not found on the client’s LNA.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 89 –

Table 30 – Transaction cancel acknowledge message

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m MAPI_CACK

4 – 5 word16_m Priority

6 – 7 word16_m Length = 20

8 – 9 mcid_m ID of MCP

10 – 11 word16_m Session (for server)

12 – 15 word32_m Transaction code

16 – 19 word32_m status: LM_OK or error code.

The session code shall be the one applicable to the server MAU. The transaction code shall
be the one specified for the request to be cancelled.

8.3 LNA-LNA message formats for reliable link

The reliable link is used for all control messages between LNAs and for all reliable data
transfers. The broadcast link is used for broadcast data.

8.3.1 General message format

All messages between LNAs use the general message format described in 8.1.1. All provisions
of that subclause apply to the LNA-LNA messages.

8.3.2 Connection management

8.3.2.1 Connection establishment

Connection establishment between LNAs is handled by the T-profile. The TLI will report the
success of a connection request or the incoming connection attempt by referencing it to the
network node number (NNN) of the remote host computer and the TP network at which the
connection was registered. The T-profile will make sure that the reported link connection point
is the only one used for communication with that remote LNA.

8.3.2.2 Connection watchdog (LL_ALIVE)

This message is used by an LNA to check or verify if an LNA-LNA link is alive.

Table 31 – Connection watchdog message

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m LL_ALIVE

4 – 5 word16_m Priority

6 – 7 word16_m Length = 10

8 – 9 word16_m Status: 0 = request answer

The status code is used to ask for an answer. Zero in this field shall cause the receiver to
immediately reply with a similar message. The answer should normally have the status field
set to non-zero to avoid looping.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 90 – 61162-401/FDIS IEC(E)

Failing to answer to this message within a deadline defined in 6.3.4 will cause the requesting
LNA to close the communication link and flag the LNA as dead.

8.3.3 MAU management

8.3.3.1 MAU request message (LL_MAUREQ)

This message is used to request the confirmation of a specified MAU’s location. The message
format is described in Table 32. A positive or negative acknowledge is sent in a LL_MAUACK
message.

Table 32 – MAU request message

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m LL_MAUREQ

4 – 5 word16_m Priority

6 – 7 word16_m Length = x+1

8 – 9 mauid_m Requestor – MAU id

10 – x mauname_m MAU name string

The MAU identity code transmitted is the identity code allocated by the requesting LNA for
this MAU (corresponding to the LNA's MAU database object described in Figure 10). This
identity code is also used in the acknowledgement message (see next subclause).

8.3.3.2 MAU acknowledge message (LL_MAUACK)

This message is used to confirm a requested MAU’s location or to report the death of a
connected MAU to remote users. The message format is described in Table 33. The LNA that
receives an LL_MAUREQ message shall check if the specified MAU exists locally and format
the acknowledge message accordingly.

Table 33 – MAU acknowledge message

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m LL_MAUACK

4 – 5 word16_m Priority

6 – 7 word16_m Length = 12 or 14

8 – 9 mauid_m Requestor MAU id (from request message)

10 – 11 word16_m Found

12 – 13 mauid_m Local MAU id (if MAU is known)

The LL_MAUACK message contains the identity reported by the requesting LNA and then the
result of the name look-up in the found field:

a) LM_OK (zero) is used if the MAU was found as a result of a previous request, the identity
code follows;

b) LM_RMAU_DOWN is used if a defined MAU has died, the identity code follows;

c) LM_MAU_NOT_FOUND is used if the MAU was not found as a result of a request. No
identity code follows.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 91 –

The receiver of this message, when the remote MAU is signalled down, shall inform all its
MAUs that have connections to the dead MAU about its death. Internal LNA states shall be
cleaned up and MCP reconnection attempts shall be started.

8.3.3.3 Congestion control message (LL_SESSION)

This message is used to report the congestion state for a specific MAU. It is sent by an LNA
as a result of a request from one of its MAUs. The message can be directed to a specific
remote MAU or be a general congestion report for all messages to the afflicted MAU.

Table 34 – Congestion control message

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m LL_SESSION

4 – 5 word16_m Priority

6 – 7 word16_m Length = 16

8 – 9 mauid_m Afflicted MAU on sender LNA

10 – 11 mauid_m Offending MAU on receiving LNA (or zero)

12 – 15 word32_m Congestion control message

The afflicted MAU shall always be specified. The offending MAU is only specified when a
specific MAU-MAU association is addressed. If the offending MAU code is zero, all MAUs on
the receiving LNA that have connections to the afflicted MAU shall get the congestion control
message.

The congestion control messages are defined in 5.2.4. The SESSION_DOWN code shall be
ignored.

8.3.3.4 MAU or MCP unknown (LL_NOMCP)

This message is used to report an unknown MAU or MCP identity as a result of a previous
request. The receiver of this message shall check internal state and try to determine the
cause of the message. However, the message may be caused, for example by crossing
cancellations and data acknowledgements, and may not always be traceable to a bad state.

Table 35 – Unknown MAU or MCP

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m LL_NOMCP

4 – 5 word16_m Priority

6 – 7 word16_m Length = 18

8 – 9 word16_m Offending message/request

10 – 11 mauid_m MAU id (as transmitted in request – or zero)

12 – 13 mcid_m MCP id (as transmitted in request – or zero)

14 – 17 word32_m Transaction id (as transmitted in request – or zero)

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 92 – 61162-401/FDIS IEC(E)

The offending message field contains the message code for the offending request (typically
LL_DATA or LL_DATAC). The rest of the message contains target information as used in the
offending LNA’s message identification codes. Fields that are not relevant are zero.
8.3.4 Interface connection management

8.3.4.1 Interface open request message (LL_IFREQ)

This message is used to request the opening of a connection to a server’s interface on a
remote LNA. The message is compiled by the sending LNA from MAPI_IREQ requests from its
local MAU.

Table 36 – IF open request message

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m LL_IFREQ

4 – 5 word16_m Priority

6 – 7 word16_m Length = x+1

8 – 9 mauid_m ID of connecting MAU

10 – 11 mcid_m ID of connecting IF

12 – 12 bool_m More (true if more messages follow)

13 – mauname_m Server MAU name (null terminated)

 – ifname_m IF name (null terminated)

 – password_m IF password (null terminated)

 – word16_m Number of MCPs in this message

 – mcid_m ID of new MCP Information

 – mcpname_m MCP name (null terminated) repeats for

 – x format_m Format string (null terminated) each MCP

The data entries and the formats are the same as in the MAPI_IREQ message.

NOTE In particular, the main parts of the message are identical in layout to the MAU-LNA message. This can be
utilized to make processing more efficient.

8.3.4.2 IF acknowledge message(LL_IFACK)

This message is used by a server MAU’s LNA to acknowledge the connection of a number of
MCPs in an interface.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 93 –

Table 37 – Interface open acknowledge

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m LL_IFACK

4 – 5 word16_m Priority

6 – 7 word16_m Length = x + 1

8 – 9 mauid_m ID of connecting MAU

10 – 11 mcid_m ID of connecting IF (as specified in request)

12 – 13 mauid_m ID of accepting MAU

14 – 15 mcid_m ID of accepted IF

16 – 16 bool_m More (true if more messages follow)

17 – 18 word16_m Result: LM_OK or error code

19 – 20 word16_m MCPs in this message

21 – mcid_m MCP identity Either repeat for

- x word32_m Error code all bad MCPs

21 – mcid_m Client MCP identity or repeat for

- x mcid_m Server MCP identity all MCPs

The server LNA reports back either all mappings between client and server MCP codes or a
list of bad MCPs, if applicable. The mapping is only returned when the general message
status is connection established. The error codes are only returned when the general
message status is connection denied and there were errors related to individual MCPs. The
server LNA does not have to return any MCPs, but it is suggested that error codes are
returned whenever possible to ease diagnostics.

An unsuccessful match is indicated with one of the following codes:

a) LM_RMAU_DOWN: the MAU was not at this LNA, all fields invalid;
b) LM_NO_INTERFACE: the interface was not found, all fields invalid;

c) LM_INVALID_MCP–: the MAU and interface were found, but an error in matching MCP
occurred. Bad MCPs follow;

d) LM_FORMAT_FAIL: the format string was wrong. Bad MCPs follow;

e) LM_PASSWORD_FAIL: both MAU and interface were found, but the passwords did not
match, only the accepting MAU identity field is valid. The connection was denied by the
server MAU;

f) LM_AUTHEN_FAIL: authentication failed at server MAU (for reason other than password
mismatch). The connection was denied by the server MAU;

g) LM_CLIENTS: too many clients.

All requested MCPs must be matched to establish a connection. All identity mapping codes
must be returned. The server LNA does not have to store client identity codes. It is the client’s
responsibility to supply the correct identity codes for the remote MCP.

8.3.4.3 Removed interface message (LL_IFREM)

This message is used to inform a remote LNA that the MAU’s interface (accept type) or
connection to an interface (connect type) no longer is available for data transactions. The
receiving LNA shall remove all states related to the removed interface.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 94 – 61162-401/FDIS IEC(E)

Table 38 – Removed interface message

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m LL_IFREM

4 – 5 word16_m Priority

6 – 7 word16_m Length = 16

8 – 9 mauid_m ID of sender MAU

10 – 11 mcid_m ID of sender interface

12 – 13 mauid_m ID of receiver MAU

14 – 15 mcid_m ID of receiver interface

Errors in message formats shall be ignored, but reported on a diagnostic console if possible.

8.3.5 Data transfer management

8.3.5.1 Data transfer message (LL_DATA)

The data transfer message is used to transport MAU data messages (MAPI_xREQ and
MAPI_xACK) when in transit between LNAs. The message format is shown in the table below.

Table 39 – Data transfer message

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m LL_DATA

4 – 5 word16_m Priority

6 – 7 word16_m Length = x+1

8 – 9 mauid_m ID of receiver MAU

10 – 11 mcid_m ID of receiver MCP

12 – 13 mauid_m ID of sender MAU

14 – 15 mcid_m ID of sender MCP

16 – x word8_m[] MAU message including header

The inclusion of MAU and MCP codes can be used to verify the correctness of the message.
This information shall also be available from the general MAU and MCP look-up process.

The MAU data transfer message is always included verbatim in the body of this message. The
LNA should try to minimize copying by using this fact.

Before a message received from a MAU is sent to a remote LNA, the local LNA needs to
modify the MAU message as follows:

a) change transaction code if necessary. The transaction code shall be unique for the LNA
(within the precision of the code) or it shall correspond to the transaction request to which
this acknowledgement belongs. Discard messages that have wrong transaction codes (the
transaction was most likely cancelled);

b) change target MCP ID to that of the remote MAU;
c) set priority of LNA message according to that of the MAU message.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 95 –

Before the MAU message can be sent to the MAU, the LNA needs to modify the message as
follows:

a) check incoming transaction code (for acknowledgements) against request transaction
code. Discard messages with wrong code (the request was probably cancelled);

b) change transaction code, if necessary, to that of the corresponding request.

8.3.5.2 Data cancel message (LL_DATAC)

The data transfer message is used to transport MAU data cancel messages (MAPI_CREQ and
MAPI_CACK) when in transit between LNAs. The message format is shown in Table 40.

Table 40 – Data cancel transfer message

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m LL_DATAC

4 – 5 word16_m Priority

6 – 7 word16_m Length = x+1

8 – 9 mauid_m ID of receiver MAU

10 – 11 mcid_m ID of receiver MCP

12 – 13 mauid_m ID of sender MAU

14 – 15 mcid_m ID of sender MCP

16 – x word8_m[] MAU message including header

Note that the message format is identical to that of the LL_DATA message. See subclause
8.3.5.1 for comments on processing and header data. The same comments regarding
processing apply also to this message.

8.4 LNA-LNA message formats for multicast link

The multi-cast link is used for all name look-up, watchdog activities and general broadcast of
data.

8.4.1 General message format

All multi-cast messages between LNAs use the general message format described in 8.1.1.
All provisions of that subclause apply to these messages.

Note that multi-cast messages typically have limited message length and that special
restrictions on message contents can occur.

8.4.2 Different multi-cast ports

All LNAs shall maintain a number of listening ports for LNA-LNA multicast messages. The
following groups of ports are defined:

a) ABC0: standard port for LNA related broadcasts (MAU name requests and acknowl-
edgements and general broadcast subscriptions);

b) ABC1 to ABC5: ports for anonymous broadcast messages.

NOTE The client and server LNAs must check the format string to determine if a subscribe type MCP shall use
the broadcast or the reliable port. It also needs to examine the MAU name to see which anonymous port to use.
The messages from the MAU are identical for all types of subscribe.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 96 – 61162-401/FDIS IEC(E)

The T-profile is required to establish these listening ports depending upon the properties of
the TP network in use. This includes subscribing to multi-cast messages if appropriate.

8.4.3 Name look-up and watchdog messages

8.4.3.1 Request MAU location (CC_REQMAU)

The LNA can use the message shown in Table 41 to request the location of a MAU. The
message is answered by the LNA that serves the MAU with a CC_DEFMAU message.

Table 41 – Request MAU location

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m CC_REQMAU

4 – 5 word16_m Priority

6 – 7 word16_m Length = x+1

8 – x mauname_m MAU name string

This message shall only be used in the first requests for a MAU. Later requests shall normally
use CC_WATCHDOG.

8.4.3.2 Define MAU location (CC_DEFMAU)

The message shown in Table 42 is used to broadcast the location of a MAU. It is only sent by
the LNA that serves this MAU. The message shall be sent when the MAU is defined by the
LNA and each time the MAU’s location is requested through a CC_REQMAU or a CC_WATCHDOG
message.

Table 42 – Report MAU location

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m CC_DEFMAU

4 – 5 word16_m Priority

6 – 7 word16_m Length = x+1

8 – 11 word32_m Network node number of LNA serving MAU

12 – 13 mauid_m MAU identity code

14 – x mauname_m MAU name

8.4.3.3 Warning about duplicate MAU (CC_METOO)

The message described in Table 43 is used by LNAs that have a local MAU in their database
with a name equivalent to one reported by a CC_DEFMAU or CC_WATCHDOG message.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 97 –

Table 43 – Report duplicate MAU

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m CC_METOO

4 – 5 word16_m Priority

6 – 7 word16_m Length = x+1

8 – 11 word32_m Network node number of LNA serving MAU

12 – 13 mauid_m MAU identity code

14 – x mauname_m MAU name string

This message is currently used only to inform about a potential configuration problem in the
system. An LNA receiving this message shall report it as a system problem.

8.4.3.4 Report dead MAU (CC_DEADMAU.

The message described in Table 44 is used to report that a MAU local to an LNA has died.
LNAs receiving this message shall remove that MAU from their name look-up databases.

Table 44 – Report dead MAU

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m CC_DEADMAU

4 – 5 word16_m Priority

6 – 7 word16_m Length = x + 1

8 – 11 word32_m Network node number of LNA serving MAU

12 – 13 mauid_m MAU identity code

14 – x mauname_m MAU name string

8.4.3.5 LNA watchdog message (CC_WATCHDOG).

The message described in Table 45 is used to send regular LNA watchdog messages,
including information about known and unknown MAUs.

Table 45 – LNA watchdog

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m CC_WATCHDOG

4 – 5 word16_m Priority

6 – 7 word16_m Length = x + 1

8 – 11 word32_m Network node number of LNA

12 – 13 word16_m Requested MAU names

14 – 15 word16_m Known MAU names

16 – x []mauname_m MAU name strings

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 98 – 61162-401/FDIS IEC(E)

The LNA shall give priority to sending requested MAUs, but should also try to send as many
known MAUs as possible, given the finite length of the broadcast message. The order of MAU
names are requested MAUs first and known MAUs after. The total of the MAU name counts
and messages shall be equal.

8.4.4 Data transfer messages

8.4.4.1 Ordinary broadcast data transfer message (LLBC_SACK)

This message contains an ordinary unreliable subscribe, server initiated data acknowledge
package. The message format is described in Table 46.

Table 46 – Ordinary broadcast data transfer message

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m LLBC_SACK

4 – 5 word16_m Priority

6 – 7 word16_m Length = x + 1

8 – 9 mauid_m ID of server MAU

10 – 11 mcid_m ID of server MCP

12 – x word8_m[] MAU message including header (MAPI_BACK type)

The receiving LNA shall distribute the embedded MAU message to the subscribing client MCP
or MCPs local to the LNA. For this purpose, the LNA needs to maintain a list over subscribing
MCPs. The server’s identity codes must be used to distinguish between different broadcast
subscribe sources. All broadcast messages will normally arrive at the same network port
(dependent on transport protocol in use – see IEC 61162-410).

The MAU message needs to be modified by the receiving LNA to change MCP identity codes
to the code appropriate for the receiving MAU (see 8.2.3.3 and 8.2.4.2).

8.4.4.2 Anonymous broadcast type data transfer message (LLBC_AACK)

This message contains an anonymous unreliable subscribe data acknowledge package. The
message format is described in the table below.

Table 47 – Anonymous broadcast data transfer message

Octet # Data type Field description

0 – 1 word16_m MV4_MAGIC

2 – 3 word16_m LLBC_AACK

4 – 5 word16_m Priority

6 – 7 word16_m Length = x + 1

8 – 15 [8]char8_m MPC name (8 left-most characters, no null)

16 – 19 word32_m Format hash

20 – 21 int16_m Format string length

22 – x []word8_m MAU message including header (MAPI_AACK type)

See previous clause for details on processing. See also 8.4.5 for details on calculation of
MCP attribute values.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 99 –

The MAU message needs to be modified by the receiving LNA to change MCP identity codes
to the code appropriate for the receiving MAU (see 8.2.3.3 and 8.2.4.2).

8.4.5 Anonymous broadcast message details

8.4.5.1 General

The data message associated with anonymous broadcasts must embed some parts of the
format string and MCP names in the message itself. Otherwise, it will not be possible to
distinguish different messages (from different MCPs) arriving at the same ABC port.

8.4.5.2 Encoding of MAU name

There is no MAU associated with anonymous broadcasts.

8.4.5.3 Encoding of interface and MCP name

The MCPs supporting anonymous broadcast must use the interface corresponding to the
appropriate ABC port. The MCP name is restricted to eight characters which are embedded in
the message. The interface is encoded implicitly in the ABC port used. The eight left-most
characters (first characters) of the MCP name are used. No null padding shall be used if all
characters are transmitted, otherwise, all non-used characters shall be null.

8.4.5.4 Encoding of format string

The format string is encoded in six octets. Two octets (as one int16_m) give the length of the
format string including leading “a/”, but excluding terminating null. Four octets (word32_m)
give a hash value of the format string derived as described below.

a) Strip the format string of the leading two characters: “a/”.

b) Null pad the string at the end until it is an integral number of four octets long.
c) Divide the string into groups of four consecutive octets. Index the elements from zero to

three from the string start towards the end.
d) Create four sums of octets, each a sum of all group elements with the same index (without

carry from one octet to the next).
e) Assemble the resultant four octets into a word32_m by using index zero as the most

significant octet, index one as the next and so on.
f) Use the resulting word32_m as the hash value.

8.4.5.5 Processing of messages

The LNA that processes a client side connection request shall calculate the format string
length and the hash value and use these to check incoming packets for matches to the
connection type MCPs, together with the MCP name.

The server LNA shall likewise calculate the two values and insert them into the outgoing
message together with the MCP name.

8.4.5.6 Example of the format string

The format string “a/(w32[32]c8f32f32)” has the octet breakdown shown in the table below.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 100 – 61162-401/FDIS IEC(E)

Table 48 – Example ABC format calculation

Character Hex value Sum 0 Sum 1 Sum 2 Sum 3

a/ 61,2f

(w32 28,77,33,32 28 77 33 32

[32] 5b,33,32,5d 83 AA 65 8F

c8f3 63,38,66,33 E6 E2 CB C2

2f32 32,66,33,32 18 48 FE F4

) 29,0,0,0 41 48 FE F4

The resulting format hash number will be 0x4148fef4. The length will be 19 octets.

9 General identity codes

9.1 Protocol and software version codes

The version code consists of a major (to the left of the decimal) and a minor (to the right)
number. The format is N.M, where N and M are two positive decimal numbers. M can be zero.

The minor number shall be incremented when a modification is made that has no or little
significance for functionality. It is assumed that these modifications will retain full compatibility
with older versions of the protocol.

The major number shall be incremented when a significant change is made in the protocol.
Significant means that older versions cannot be fully compatible with the new. Care shall,
however, be taken to achieve upward compatibility, i.e. that older nodes can continue to use
old functionality together with new nodes.

Sometimes a third number is used, giving a patch level for the current version. The third
number will normally be placed after a decimal sign at the right of the two other numbers.

9.2 Network address, node number and LNA id (address_m, word32_m)

The T-profile address-specification is of the type address_m. The format of the address is
the same for all nodes (LNAs) on one T-profile network (TP-network). Each TP-network shall
have one network address that is the same for all nodes and identifies the network on which
the nodes are located.

The TP-address specification is composed of a 16 bit unsigned integer specifying the type of
protocol and a variable length array of up to 48 octets. The contents of the array will depend
on the type of address. The address types and array interpretation are determined by the
T-profiles and the companion standard IEC 61162-420.

Within the TP-network, the individual LNAs are identified with the network node number –
NNN (word32_m). The LNA identity is defined as the network node number on a given
TP-network.

9.3 MAU identity (mauname_m, mauid_m)

A MAU (connected or disconnected) shall be assigned a symbolic name (mauname_m). The
MAU name is a null terminated character string with a length of maximum MAUNAME_LEN
characters excluding null. Any character except null and a leading underscore (‘_’) is allowed
in the string.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 101 –

NOTE The standard allows a server MAU to use a leading underscore (‘_’) in a dummy name to inform the LNA
that it should select a name for the MAU. This means that it is impossible for a server MAU to use a leading
underscore in its configured name.

The identity of a MAU connected to the network is determined by the MAU identity code
(mauid_m) together with its LNA’s identity code (network address). The standard does not
guarantee that two MAUs with identical symbolic names do not connect to the network. This
means that the (address_m, mauid_m) tuple is the only unambiguous identification.

The following MAU names are reserved by this standard:

a) _.*: a leading underscore is not allowed as a general MAU name (see above);
b) LNAhhhhhhhh: the LNA associated built-in MAU. The string following the LNA is the

network node number of the LNA encoded in hexadecimal (most significant octet first),
using only lower case letters and leading zeros.

9.4 Data object and MCP identity (mcid_m)

There are three forms of data object related identity codes. These are schematically
illustrated as heavy outlined and numbered (1 to 3) rectangles in Figure 32.

Local

lnaid_m

mauid_m

mcid_m

3

Server

lnaid_m

mauid_m

mcid_m

2

Local (Server)

lnaid_m

mauid_m

mcid_m

2

LNA LNA

Virtual data
object

"Server MAU name"

"Data object name"

"Format string"

1

Client MAU Server MAU

"Interface name"

Figure 32 – Variants of data object identity

The identity forms are:

a) when a server MAU has defined a new MCP one can look at this as a virtual data object
existing somewhere in the network. This object is identified by a set of attribute values in
the form of symbolic text strings:

− server MAU name,

− interface name,

− data object name,

− format string containing transaction type and data record structure;
b) the server MAU uses a numerical MCP (MAU connection point) code (mcid_m) internally

to reference the data object. This code together with the identity codes for the server MAU
and the LNA is a global identification triplet used by the server LNA and any other LNAs
accessing this data object;

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 102 – 61162-401/FDIS IEC(E)

c) any client MAUs connecting to the data object also get a local MCP code. This code,
together with the client MAU and the local LNA codes, form an identification triplet for the
client’s reference to the data object.

The server and client MAUs need only use their local MCP code internally, while the LNAs
normally use the complete identification triplet. The server MAU and all its clients will normally
have different MCP codes.

NOTE 1 The interface identity is used to reference the interface to which the MCPs belong. It is the MCP identity
code that is used during transactions. These must be unique over all interfaces used by a MAU.

NOTE 2 The MCP identification code is local to each MAU. The involved LNAs need to be able to convert
between the triplet codes, as indicated with the difference between identity types 2 and 3.

9.5 Interface code (mcid_m)

The local MAUs also maintain an interface code of the same format as the MCP code. As the
scopes for these codes are different, it is possible for the MAU to use, for example the first
MCP code in an interface as the code for that interface.

The LNAs use their MAUs interface codes to identify the interfaces, much as the MCP
identification described in the previous subclause.

9.6 Data object name (mcname_m, mciname_m)

9.7 Interface name (ifname_m)

The interface name is a null terminated character string of the type ifname_m. It has a length
of maximum IFNAME_LEN characters excluding null. All characters except null are allowed in
the string.

9.8 Session identity (word16_m)

This identity code is local to each LNA and is used to identify an association between two
MAUs. The session identity shall be unique and the same for all associations between two
MAUs on a single LNA. The session identity shall not be reused if one association is broken
and then re-established.

9.9 Transaction identity (word32_m)

The transaction identity is used to identify a certain transaction that is requested by a client
MAU. The transaction identity may change when the transaction is sent through the client’s
LNA, to the server’s LNA and then to the server. The requirement is that each acknowl-
edgement corresponding to a certain request on a specific link, shall use the same transaction
identity as in the original request.

9.10 Format string

The attribute value match mechanism uses a format string to check that a data object’s data
structures and allowed transaction type match between server and client. The format string
consists of a transaction type specification (defined in 9.10.2) and one or two data structure
specifications (defined in 9.10.1). The complete format string structure is defined in 9.10.3

The format string is encoded in a null terminated text string. The maximum length of the
format string is dependent on the message sizes supported by the T-profile in use.

9.10.1 Data record format encoding

The one or two (for function type) data structures associated with each data object are
encoded in a text string. The structure of the string is defined in this subclause.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 103 –

Table 49 describes the composite data types and how their format sub-string is constructed.
The construction of the format string does also define the construction of the composite
elements (see 8.4.3.5 for more information on format strings).

Table 49 – Composite element formats

Structure Format Short format Description

Basic type B b Defined as one format code in table 3, for example i16 or c8

Element E e A basic type, a record, an array, union or a var-array

Basic element X x A basic type, a record or union

Array length N N Array length as a decimal number encoded in the text string

Record (E+) (e+) A concatenation of format sub-strings in parenthesis. The
format specification is read from left to right

Union {B:E+} {be+} As for record, but with an additional index as for the var-array

Array [N]X *Nx Length in square brackets in front of the format, N is the length
of the array in X type entities

Var-array [B:N]X *bNx Actual length of transmitted array placed in an unsigned entity.
B defines type: Only w8, w16 or w32 are legal. N is the
maximum length of array in X type entities

Opaque block <B:N:ID> <bN:ID> Actual number of octets transmitted placed in an unsigned
entity. B defines type: Only w8, w16 or w32 are legal. N is the
maximum length of array in octets. ID is the name of the
specification that is needed to interpret block. ID is a sequence
of printable letters, except the pointed brackets.

The format string for a data object will consist of the concatenation of format code strings
defined in Table 3 and the following special characters: ‘<’, ‘>’, ‘(’, ‘)’, ‘[’, ‘]’, ‘{’, ‘}’, and ‘:’. In
addition, all decimal numbers are allowed in array length specifications. The following list
defines the four types of data objects that are supported:

a) basic type. This is one of the native types as defined by Table 3.
EXAMPLE – “w16”, “f64”

b) record. This is a collection of a number of previously defined records, basic types, or
arrays.
EXAMPLE – “(w16(w32i16))”

c) union. This is a collection of a number of previously defined records, basic types, or
arrays with an additional integer indicating which of the elements that is transmitted.
EXAMPLE – “{w16:w16(w32i16)}”

d) fixed length array. This is a one-dimensional fixed length array of basic types or records.
The length of the array (in array type units) is encoded in the format string as a decimal
number.
EXAMPLE – “[32](w16(w32i16))”, “[20]w16”

e) variable length array. This is a one-dimensional variable length array of basic types or
records. The maximum length of the array is encoded in the decimal number. The actual
transmitted length of the array will be transmitted in one of the three unsigned integer
basic types. The integer type used is encoded in the format string.
EXAMPLE – “[w8:32](w16(w32i16))”, “[w16:300]w32”

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 104 – 61162-401/FDIS IEC(E)

f) opaque block. This is a sequence of octets that need to be interpreted with the help of
some named specification.
EXAMPLE – “<w8:32:ObjectMethod_45>”

It is not legal to declare an array of arrays. Opaque blocks will normally be used as stand-
alone types and not embedded in other structures.

9.10.2 Transaction type coding

Each data object supports exactly one transaction type. This transaction type is coded as a
single character in the format string. The character codes are defined in Table 50 as the first
character in the format column.

9.10.3 Complete format string

The format strings associated with the transaction types are defined in Table 50. The Xes in
the table represent the data object format string as defined in 3.4.3. The bold faced
characters represent reserved characters used in the format string.

Dependent on transaction type one or two (for function) data record format strings (Xes) need
to be included in the format string. It is also legal to define data objects with one or two empty
data records. In this case, the corresponding data record format strings are empty.

Table 50 – Format string structure

Transaction type Format Description

Function f/X1/X2 Function, write X1 and read X2

Write w/X Write X

Read r/X Read X

Subscribe s/X Subscribed read X

Individual subscribe i/X1/X2 Individual subscribe, write X1, subscribe on X2

Anonymous subscribe a/X Anonymous subscribe, read or write X

Broadcast subscribe b/X Broadcast subscribe on X

Non-acknowledged write n/X Non-acknowledged write X

The complete format string will be a null-terminated text string consisting of a leading
character specifying the transaction type supported by this data object. Thereafter follows one
or two data object structure specifications, each headed with a slash (‘/’).

EXAMPLE – “f/(w16(w32i16)/w32”, “n/(w32w32)”, “f//w16”, “f/w16//”, “w/”

9.11 Password (password_m)

The password is a null-terminated text string placed in a password_m data type. At most
PASSWORD_LEN characters excluding the terminating null are significant in the password. All
characters except null are legal.

Note that the password is not part of the MCP attributes.

10 Data marshalling

10.1 Introduction

This standard defines a data transport mechanism that will conserve the representation and
precision of data entities exchanged between client and server. The transport mechanism will

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 105 –

also conserve boundaries between individual data items and aggregates as supported by the
standard.

It is the responsibility of the API to convert between its internal data record representation
and the representation used in the transport mechanism.

The conversion principle will be different on different computers and programming languages.

a) One cannot guarantee that there is a one to one mapping between the basic data types
defined in this standard and the target computer architecture, for example a given
computer may not support all basic data types. It is then necessary to define a new
mapping that conserves precision and representation.

b) Different computers use different principles for ordering of the most and least significant
octets within a larger numeric entity.

c) Different programming languages and operating systems use different principles for
ordering and alignment of individual data items within aggregates (arrays and records).

d) Different implementations of a compiler for the same programming language on the same
computer architecture may in some cases use different ordering or alignment within
aggregates.

For the specification of data object attributes, the structure of the data record will be encoded
in a text string (format string). The structure of this string is based on a one to one mapping
between data record structure and format string. Thus, it is in principle possible to define a
general data marshalling routine that does the necessary conversion based on this format
string. This routine must be able to handle the problems outlined above. On the other
extreme, some implementations can supply different data marshalling routines for each
different data record structure.

10.2 Network octet order

10.2.1 General

The order of transmission of data described in this standard is resolved to the octet level.
Multi-octet entities or composite types are sent packed, i.e. with no padding between
elements or octets.

The format string will give an unambiguous description of how to pack data into or out of
network transmission orders.

10.2.2 Basic types

The bool_m type in single entity or as array will be transmitted in whole octet entities. Up to
eight bool_m entities will be packed into each octet. Least significant bit of the octet
represents the lowest index or, if it is a single entity, the entity itself.

NOTE A part of a record with a number of individual bool_m entities will be transmitted as the same number of
octets.

The 8-bit character shall be transmitted as its direct numeric representation encoded in an
8-bit unsigned integer (ISO/IEC 8859-1).

The 16-bit character shall be transmitted as the direct representation as two octets, most
significant first, as specified in ISO/IEC 10646-1.

All other single octet entities will be sent as single octets. All other multi-octet types shall be
transmitted in their specified binary representation with the most significant octet first.

Floating point numbers shall be transmitted as specified in IEEE 754, most significant octet
first.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 106 – 61162-401/FDIS IEC(E)

10.2.3 Composite types

Arrays shall be transmitted with the lowest index first. Variable length arrays shall be
transmitted with the element count in front of the lowest index element. Zero length variable
length arrays are transmitted as length field only.

Records shall be transmitted in the order they are defined in the companion standard. The
first element of the definition is transmitted first. The order in the definition is determined by
the companion standard.

Unions are transmitted as the index entity first and the indexed element immediately following
in the same way as for records.

10.2.4 Messages

Messages are a collection of basic and derived types. The message shall be transmitted as
described in the message definition table, line by line, top line first and without any extra
(padding) octets.

Some messages include an indeterminate length octet field identified as word8_m[] or
string_m. This field shall be transmitted as defined in 3.1.13 or as a null-terminated text
string with the left-most character first (for string_m).

The rules in this subclause apply to LNA-LNA messages as well as MAU-LNA messages when
the latter is transmitted over an bit-stream communication link.

10.3 Pack and unpack routines

10.3.1 Introduction

This clause assumes that the API contains routines to convert a native representation into the
protocol octet order (a pack routine). Likewise, it will also contain routines for conversion
between protocol octet order and native order (unpack routines).

These routines may be particular to each different type of data structure, or a general
pack/unpack routine may be devised, based on the parsing of the format string.

The API will call the data unpack routine just before handing data over to the MAU. Similarly it
will call the data pack routine just after the MAU has created a data output structure, but
before the data is committed to the output message queue.

There are several ways to create these routines:

a) one pack/unpack routine for each record type. This is relatively inefficient, but easy to
implement and generate automatically;

1 one general pack/unpack routine that uses offset information from a data record compiler.
The record compiler would have to be run for each compiler/architecture type. This may
cause problems for software that is intended to be ported;

1 one general pack/unpack routine that can use the format string directly. This means that
the compiler from the previous item essentially is built into the routine.

10.3.2 Pack routine

This routine will convert MAU internal data record representations to the standard transport
format. This routine must be called before a write type request or a read type acknowl-
edgement is sent.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 107 –

Input:

– format string specification;
– data record.

Output:

– octet string buffer.

Error codes:

– overrun in output buffer;
– syntax errors in format string.

10.3.3 Unpack routine

This routine will convert the standard transport format to MAU internal data record
representation. This routine shall be called before a read type acknowledgement or a write
type request is processed.

Input:

– format string specification;
– octet string buffer.

Output:

– data record.

Error codes:

– overrun in input buffer;
– syntax errors in format string.

11 Communication link between MAU and LNA

11.1 Introduction

The MAU-LNA communication can be done through host computer local IPC mechanisms or
by an explicit communication link transport service. The specific properties of an IPC
mechanism are not covered by IEC 61162-4 except to the degree that the mechanism must be
able to support the MAU-LNA message exchange covered by this part of the standard.

This clause specifies the general semantics for a general MAU-LNA communication service
based on some kind of communication link.

Some T-profile specifications will in some cases define an appropriate MAU-LNA communi-
cation protocol. A protocol for use over standard TCP/IP is defined in IEC 61162-410.

11.1.1 General service specification

The MAU-LNA protocol can in principle use any transport service that satisfies the
requirements defined in this clause.

The general MAU-LNA protocol transport service shall satisfy the requirements specified by
the following subclauses.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 108 – 61162-401/FDIS IEC(E)

11.1.2 Point to point

The service transfers data on a (virtual) point to point communication link between one client
(MAU) and one server (LNA).

11.1.3 Connection oriented

The use of the service has three main phases: Establishment of link, transfer of data and
closing of the link.

Establishment of the communication link is initiated by the client (MAU). Before the link can
be established, it is necessary that the server (LNA) has announced its willingness to accept
connection requests from the client. The server listens for connection requests at the
announced connection address.

11.1.4 Symmetrical and full duplex

Except for the establishment of the link, all other use of the link is symmetrical, i.e. data
transfer and closing the link can be initiated by either client or server at any time. The link
shall be full or half duplex.

11.1.5 Message based

An atomic data message sent from one side of the link shall be delivered to the receiver in
one atomic operation. The service shall be able to handle a maximum message size suitable
for the proposed use (MAU-LNA messages).

11.1.6 Priority

The message link shall support the three priority levels used by this standard to the best
possible level. Messages on a higher priority level shall be processed before messages on a
lower priority level. Messages within the same priority level shall be processed on a strict first
come first served principle.

NOTE Some implementation may not be able to support priority. In particular, the TCP/IP link defined in
IEC-61162-420 is intended for wide area network test integration and does not support priority.

11.1.7 Buffering and flow control

The service shall buffer incoming and outgoing messages if these cannot be processed
immediately by the service user or the transport layer, respectively. The buffer space shall be
sufficiently large to accommodate a reasonable number of messages. Buffering shall be
complemented with flow control as is appropriate for the protocol in use.

11.1.8 Reliable transfer

A message sent by this communication service shall be guaranteed to an acceptable level to
be delivered with correct contents and in correct sequence to the receiver. A suitable error
detection (and optionally error correction) scheme shall be employed. If errors are detected
they shall if possible be corrected and an error message shall be delivered to at least one of
the service users (client or server).

11.1.9 Error reporting

Both the client and server side of the service provider shall report the communication error to
the user of the service. Unrecoverable errors shall be handled by closing the link immediately
and notifying the user of the error.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 109 –

12 General principles for module functionality

12.1 Flexibility in receiving, conservatism in sending

All modules should be flexible in the interpretation of messages they receive. They should not
enforce parts of the standard that are of no consequence to them. This will help to cater to
possible extensions of the standard and also help to make sub-standard or marginal
implementations operate as expected. Some examples are:

a) maximum sizes (message lengths, string lengths, etc.) should not be enforced by
receiving modules except where absolutely necessary;

b) the LNA should avoid checking format strings or data fields relating to MAU’s data objects.
The format strings are not important to the LNA and future expansion of the standard may
introduce new format conventions;

c) implementations that can cause deadlocks due to missing or unexpected messages
should be avoided. New implementations should be able to receive and process
unexpected messages at any time. They should also avoid being deadlocked due to
expected, but missing messages;

d) unexpected or unknown messages that are correctly formatted (see next subclause) can
in many cases be silently discarded;

e) extra and unrecognized information after known messages should be silently discarded. It
can be expected that new versions of the protocol use this mechanism to add functionality
to existing messages.

All modules shall adhere strictly to the standard regarding outgoing messages. They should
as far as possible implement all optional restrictions described in the standard. This will help
to ensure that any sub-standard or marginal implementation of the protocol operates as
expected.

NOTE There is a trade-off between being forgivable to marginal implementations and allowing errors to propagate
in a system. The examples shown in this clause are informative only and need to be considered carefully at system
design time.

12.2 Garbled messages

Each module in the system shall ensure that messages received (and sent) are correctly
formatted. Format errors occur when one or more message data fields contain impossible
values. Wrong, but plausible name or identity fields shall not generally be regarded as
formatting errors. A special magic number is inserted at the front of all messages to make the
detection of garbled messages easier.

An incorrectly formatted message should generally cause the receiving module to close any
point to point communication link on which the message arrived.

NOTE The trade-off between being flexible in the reception of messages (e.g. silently discard unexpected
messages) and detecting bad messages must be considered carefully when new implementations are defined.

12.3 Closed communication links

A remote close of a point to point communication link indicates a communication error. The
module detecting the close must immediately tidy up all internal state relating to entities on
the other side of the link. It can then try to re-establish the link.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 110 – 61162-401/FDIS IEC(E)

Annex A
(normative)

Message codes

Table 51 is a summary of the message codes used in this standard. The value column defines
the numerical value for each code. The definition of the message can be found in clause 8.

Table 51 – Message codes

Symbol Value Description

LNA-LNA multi-cast messages

CC_DEADMAU 0x0401 Warning about death of MAU

CC_DEFMAU 0x0402 Define a new MAU

CC_METOO 0x0403 Warning of duplicate

CC_REQMAU 0x0404 Request a MAU

CC_WATCHDOG 0x0405 General watchdog message from LNAs

LLBC_AACK 0x0406 Anonymous broadcast acknowledgement

LLBC_SACK 0x0407 Broadcast subscribe acknowledgement

LNA-LNA reliable messages

LL_ALIVE 0x0301 Liveness request

LL_DATA 0x0302 Data transfer

LL_DATAC 0x0303 Data transaction cancel

LL_IFACK 0x0304 Interface connect acknowledge

LL_IFREM 0x0305 Interface removal

LL_IFREQ 0x0306 Interface location request

LL_MAUACK 0x0307 MAU name acknowledge

LL_MAUREQ 0x0308 MAU name request

LL_NOMCP 0x0309 Returned bad transaction

LL_SESSION 0x030a Session control message

MAU-LNA messages

MAPI_AACK 0x0201 Anonymous broadcast data

MAPI_AREQ 0x0202 Anonymous broadcast request

MAPI_BACK 0x0203 Broadcast subscribe data

MAPI_BREQ 0x0204 Broadcast subscribe request

MAPI_CACK 0x0205 Cancel acknowledge

MAPI_CREQ 0x0206 Cancel request

MAPI_DACK 0x0207 Individual subscribe data

MAPI_DREQ 0x0208 Individual subscribe request

MAPI_FACK 0x0209 Function call acknowledge

MAPI_FBACK 0x020a Broadcast subscribe first acknowledge

MAPI_FDACK 0x020b Individual subscribe first acknowledge

MAPI_FREQ 0x020c Function request

MAPI_FSACK 0x020d Subscribe first acknowledge

MAPI_IACK 0x020e Interface open acknowledge

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 111 –

Symbol Value Description

MAPI_IDOWN 0x020f Signal remote interface down

MAPI_IOACK 0x0211 Interface open acknowledge from server

MAPI_IOPEN 0x0210 Interface remote connect request

MAPI_IREM 0x0213 Destroy interface

MAPI_IREQ 0x0212 Interface connect request

MAPI_NREQ 0x0216 Non-acknowledged write request

MAPI_OACK 0x0214 MAU open acknowledge

MAPI_OREQ 0x0215 MAU open request

MAPI_RACK 0x0217 Read acknowledge

MAPI_RREQ 0x0218 Read request

MAPI_SACK 0x0219 Subscribe acknowledge

MAPI_SESSION 0x021a Session control

MAPI_SREQ 0x021b Subscribe request

MAPI_WACK 0x021c Write acknowledge

MAPI_WREQ 0x021d Write request

NOTE Although the entities are organized alphabetically and assigned numerical values after that principle, this
is not intentional and cannot be relied upon. The numerical values must be taken directly from the table.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 112 – 61162-401/FDIS IEC(E)

Annex B
(normative)

Error codes and message field values

Table 52 defines the numerical value for status codes and other message field values used in
this standard. the final column gives a reference to the first occurrence of the symbol. Note
that a symbol may also be used in other contexts, but with basically the same meaning.

Table 52 – Message field values

Symbol Value Description Reference

General message field values

LM_CONGESTION 13 Not delivered due to congestion 8.2.4.2

LM_OK 0 General positive acknowledge code 8.2.1.5

LM_TIMEOUT 3 User timeout on a request 8.2.1.4

MV4_MAGIC 0x5844 Magic message code for this standard 8.1.1

Status code values (normally some form of error)

LM_AUTHEN_FAIL 15 Server denied connection 8.3.4.2

LM_CLIENTS 16 Too many clients 8.3.4.2

LM_CONGESTION 13 Not delivered due to congestion 8.2.4.2

LM_DUPLICATE_MAU 20 Second MAU with this name 8.2.2.2

LM_FORMAT_FAIL 4 Data record or transaction type mismatch 8.2.2.2

LM_IF_EXISTS 12 Interface already exists 8.2.3.2

LM_RMAU_DOWN 5 Remote MAU down 8.3.4.2

LM_INVALID_MCP 8 Request with an useless MCP code 8.2.3.2

LM_LIMIT 18 Message cancel because too many transactions 8.2.4.2

LM_MAU_NOT_FOUND 0 Remote LNA did not have named MAU 8.3.3.2

LM_NOTHING_TO_CANCEL 10 Cancel on non-pending transaction 8.2.4.5

LM_NOT_SUPPORTED 7 Protocol version not supported 8.2.2.2

LM_NO_INTERFACE 14 Interface not found 8.3.4.2

LM_NO_SUCH_MCP 9 Request for unknown remote MCP code 8.2.4.2

LM_OK 0 General positive acknowledge code 8.2.1.5

LM_PASSWORD_FAIL 11 Mismatch in interface passwords 8.3.4.2

LM_RMAU_DOWN 5 Remote MAU down 8.3.4.2

Control data object function codes

M_KILL 3 Force MAU session to end 6.5.2

M_CLOSE 1 Request that MAU end session 6.5.2

M_RESET 2 Request that MAU end session and restart 6.5.2

M_RESTART 5 Internal MAU code to start a new session 6.5.2

M_STATUS 4 Request MAU status 6.5.2

Session control codes

SESSION_C0 0 Normal operation 5.2.4

SESSION_C1 1 Low priority traffic is stopped 5.2.4

SESSION_C2 2 Normal priority traffic is stopped 5.2.4

SESSION_DOWN 3 Session down 5.2.4

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 113 –

Annex C
(normative)

Symbolic constants

Table 53 defines the symbolic constants (except for message and error codes) used in
messages in this standard. Message codes were defined in annex A, error codes in annex B.
The reference column shows where the symbolic constant is described.

Table 53 – Symbolic constants

Symbol Value Description Reference

Various text string lengths

MV4_MES_MIN 512 Minimum message size 4.5.4

IFNAME_LEN 31 Length of interface name string ex. terminating null 9.7

MAUNAME_LEN 31 Length of MAU name string ex. terminating null 9.5

MCNAME_LEN 31 Length of interface MCP name string ex. terminating null 9.6

PASSWORD_LEN 7 Length of password string ex. terminating null 9.11

Interface and MCP attributes (see 5.4.3 or 5.4.5)

M_CAN_CONFIGURE TRUE if remote configurable allowed

M_CLIENTS Number of clients

M_CONN_HANDLER Connection handler

M_CONN_RCODE User return-code for connection handler

M_DESC A description string for the interface

M_FORMAT The format string

M_IFCNAME The name of the class of the interface

M_IFNAME The symbolic interface name

M_INTERFACE Return interface reference or NULL

M_IS_ACCEPT TRUE if accept type

M_LASTERROR Last error code

M_MAUNAME The symbolic server MAU name

M_MCPNAME TRUE if remotely configurable

M_PASSWORD The interface password

M_PRIORITY Default priority for transactions

M_RECV_PACK Unpack-function (marshalling for receive)

M_RECV_STORE Input data-buffer

M_SEND_PACK Pack-function (marshalling for send)

M_SEND_STORE Output data-buffer

M_SESSION Session ID for current operation

M_TIMEOUT Connection timeout (ms)

M_TRANS_HANDLER Transaction-handler

M_TRANS_RCODE User return-code for transaction handler

M_TRANSQUEUE

Value

defined

by

API

Length of transaction queue

See

reference

in

header

Various time related constants

POLL_INTERVAL 1000 Interval (ms) for LNA poll of MAU 6.8

RETRY_INTERVAL 1000 Interval (ms) for LNA search for MAU 6.2.3

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 114 – 61162-401/FDIS IEC(E)

Symbol Value Description Reference

WATCHDOG_INTERVAL 5000 Interval (ms) for transport level watchdog timeout 6.2.3

Various event codes

EV_IF_CDOWN Client disconnects from accept interface 5.5.5

EV_IF_COPEN Client requests connection to accept interface 5.5.5

EV_IF_DOWN Interface closed from remote side 5.5.5

EV_IF_NOT_FOUND Connection timed out or was denied due to,for example high
load

5.5.5

EV_IF_NO_CONNECT Attribute values inhibit the establishment of the interface 5.5.5

EV_IF_OPEN Interface open 5.5.5

EV_LNA_CLOSE Request MAU close 5.2.4

EV_LNA_CONNECT MAU-LNA connection state change 5.2.4

EV_LNA_CONNECTION_
DOWN

Communication link down, state change 5.2.4

EV_LNA_KILL Force close of MAU. 5.2.4

EV_LNA_NO_CONNECT Connection failed due to timeout or missing LNA 5.2.4

EV_LNA_OPEN_ERROR Port description parameter error 5.2.4

EV_LNA_RESET Internal MAU event: MAU is reset 5.2.4

EV_LNA_RESTART Request MAU reset 5.2.4

EV_LNA_SESSION Remote client MAU session changes state 5.2.4

EV_LNA_STATUS Return MAU status 5.2.4

EV_TRANS_ACK Transaction completed 5.6.1

EV_TRANS_CANCEL Transaction cancelled successfully 5.6.1

EV_TRANS_FAILED Transaction failed (with error) 5.6.1

EV_TRANS_REQ Transaction request to server 5.6.3

EV_TRANS_SACK

Value

defined

by

API

Transaction subscription acknowledge 5.6.3

Other miscellaneous definitions

OPEN_MCP_ID 0 Pseudo-MCP for MAU control from LNA 6.5.1

PFC_FULL 3 MAU with configuration management capabilities 8.2.2.1

PFC_LNA 1 LNA MAU class MAU 8.2.2.1

PFC_NONE 0 MAU has no PFC related capabilities 8.2.2.1

PFC_SIMPLE 2 MAU has version control capabilities 8.2.2.1

PT_LOW 0 Low priority 4.5.2

PT_NORMAL 0x100 Normal priority 4.5.2

PT_URGENT 0x800 Urgent priority 4.5.2

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�61162-401/FDIS IEC(E) – 115 –

Annex D
(informative)

Compatibility between MiTS and the IEC 61162-400 series

This annex gives an overview of the incompatibilities between MiTS and the IEC 61162-400
series. This informative annex is included to enable easier migration between the two
protocols and also encourage deployment of this new international standard in older
equipment.

D.1 General compatibility

MiTS and the IEC 61162-400 series are only compatible on the module level, i.e. applications
using the two protocols can coexist on the same computer and network, but they cannot
communicate between each other. To establish a data exchange between them, a gateway
MAU must be used. This could, for example be built using the general alarm and monitoring
companion standard IEC 61162-420.

D.2 MCPs and interfaces

The MCP structure from MiTS is more or less retained, except from some small functional
enhancements in this standard that are discussed below. The main difference is that MCPs
are now organized in interfaces which are connected en block. This means that MCPs do not
have individual connection handlers.

Session management: It is now possible to do simple flow control on a MAU to MAU (or
MAU to LNA) basis through session control messages. It is also possible to identify to which
session (a MAU-MAU association) a transaction belongs (session identifier). This is useful for
client authentication.

Null MCP: It is only usable locally for the MAU. The MAU control function is now handled by
LNA-MAU (see IEC 61162-420). This is an effect of the introduction of interfaces.

No MAU password: The removal of the full functionality of the null MCP voids the need for a
MAU password.

D.3 Transactions

Multiple and delayed transactions: Transactions are now (V4) first class objects that do not
have to be acknowledged immediately and which can be issued in any number even though
outstanding acknowledgements exist.

New transaction types: Individual subscribe allows clients to set up individual subscription
requests with one client. This simplifies the case where different clients need different
information. Anonymous broadcast subscriptions make it possible to receive messages from
unknown senders. This can be used, for example for interrogating the system about certain
information items.

D.4 Data types

New basic types: 64-bit integers have been introduced together with one bit, boolean types.
16-bit characters have also been introduced with representation according to new ISO
standards.

�
��
�
�
��
�
�
	�

�
��
��

��
�
�
�
	�
�
�– 116 – 61162-401/FDIS IEC(E)

New aggregates: Type-safe unions have been introduced together with opaque blocks. The
latter makes it possible to send any type of data in a format that is only agreed upon between
sender and receiver.

New derived types: The network address and network node numbers have been introduced
as new derived data types.
